-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMST.cpp
175 lines (140 loc) · 5.8 KB
/
MST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include <iostream>
#include <sstream>
#include <fstream>
#include <vector>
#include <algorithm>
using namespace std;
void print_vect_vect( vector<vector<double>> v){
int len = v.size();
for (int i=0; i<len; i++){
int len_sub = v[i].size();
for (int j=0; j<len_sub; j++){
cout<<v[i][j]<<',';
}
cout<<endl;
}
}
void print_vect( vector<double> v){
int len = v.size();
for (int i=0; i<len; i++){
cout<<v[i]<<endl;
}
}
bool comp_sort_edge(const vector<double> &a, const vector<double> &b){
return(a[2]<b[2]);
}
class MST{
public:
string file_address;
double number_of_nodes=0;
double number_of_edges=0;
vector<vector<double>> graph_raw;
vector<vector<double>> graph_adj;
vector<double> tree_edges;
vector<double> tree_nodes;
vector<double> candidate_edges;
double Ans;
void read_graph(string file_address){
ifstream infile;
string row;
double node1;
double node2;
double edge_weight;
infile.open(file_address);
infile >> number_of_nodes;
infile >> number_of_edges;
getline(infile,row);
while(infile.good()){
getline(infile,row);
stringstream s(row);
s>>node1;
s>>node2;
s>>edge_weight;
vector<double> edge_data = {node1-1, node2-1, edge_weight,0};
graph_raw.push_back(edge_data);
}
}
void set_graph_adj(vector<vector<double>> &graph_raw, vector<vector<double>> &graph_adj){
int num_edges = graph_raw.size();
for (int i=0; i<num_edges; i++){
int node1 = graph_raw[i][0];
int node2 = graph_raw[i][1];
graph_adj[node1].push_back(i);
graph_adj[node2].push_back(i);
}
}
void update_candidate_edges(vector<vector<double>> &graph_raw, vector<vector<double>> &graph_adj, vector<double> &candidate_edges, int &new_node){
vector<double> edges = graph_adj[new_node];
int len = edges.size();
for (int i=0; i<len; i++){
int edge = edges[i];
if (graph_raw[edge][3]==0){
candidate_edges.push_back(edge);
graph_raw[edge][3]=1;
}
}
sort(candidate_edges.begin(),candidate_edges.end());
}
void set_first_edge(vector<double> &tree_edges, vector<vector<double>> &graph_raw, vector<vector<double>> &graph_adj, vector<double> &candidate_edges, vector<double> &tree_nodes){
tree_edges.push_back(0);
graph_raw[0][3]=1;
int node1 = graph_raw[0][0];
int node2 = graph_raw[0][1];
tree_nodes[node1]=1;
tree_nodes[node2]=1;
update_candidate_edges(graph_raw,graph_adj,candidate_edges,node1);
update_candidate_edges(graph_raw,graph_adj,candidate_edges,node2);
}
void find_next_edge(vector<double> &candidate_edges, vector<double> &tree_edges, vector<double> &tree_nodes,vector<vector<double>> &graph_raw, vector<vector<double>> &graph_adj){
int len = candidate_edges.size();
for(int i=0; i<len; i++){
int edge = candidate_edges[i];
int node1 = graph_raw[edge][0];
int node2 = graph_raw[edge][1];
if(tree_nodes[node1]==0){
tree_edges.push_back(edge);
tree_nodes[node1] = 1;
update_candidate_edges(graph_raw,graph_adj,candidate_edges,node1);
return;
}else if(tree_nodes[node2]==0){
tree_edges.push_back(edge);
tree_nodes[node2] = 1;
update_candidate_edges(graph_raw,graph_adj,candidate_edges,node2);
return;
}
}
}
void find_mst(vector<double> &candidate_edges, vector<double> &tree_edges, vector<double> &tree_nodes,vector<vector<double>> &graph_raw, vector<vector<double>> &graph_adj,int number_of_nodes){
for (int i=0; i<number_of_nodes; i++){
find_next_edge(candidate_edges, tree_edges, tree_nodes,graph_raw,graph_adj);
}
}
double calc_tree_weight(vector<double> &tree_edges,vector<vector<double>> &graph_raw){
int len = tree_edges.size();
double ans = 0;
for (int i=0; i<len; i++){
int edge = tree_edges[i];
ans = ans + graph_raw[edge][2];
}
return ans;
}
MST(string file_add){
file_address = file_add;
read_graph(file_address);
sort(graph_raw.begin(),graph_raw.end(),comp_sort_edge);
vector<double> init = {};
graph_adj.resize(number_of_nodes,init);
set_graph_adj(graph_raw,graph_adj);
tree_nodes.resize(number_of_nodes,0);
set_first_edge(tree_edges, graph_raw, graph_adj, candidate_edges, tree_nodes);
find_mst(candidate_edges, tree_edges, tree_nodes,graph_raw, graph_adj,number_of_nodes);
Ans = calc_tree_weight(tree_edges,graph_raw);
}
};
int main(){
string file_address = "G:\\My Drive\\course\\Algorithm\\Minimum Spanning Tree\\edges.txt";
MST mst(file_address);
cout.precision(100);
cout<<mst.tree_edges.size()<<endl<<mst.Ans<<endl;
return 0;
}