forked from cantren/prog_gans_pytorch_inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_weights.py
150 lines (111 loc) · 4.41 KB
/
transfer_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
This work is based on the Theano/Lasagne implementation of
Progressive Growing of GANs paper from tkarras:
https://github.com/tkarras/progressive_growing_of_gans
Script for weight transfer (lasagne - PyTorch)
"""
from __future__ import print_function
import argparse
import numpy as np
import os
import cPickle
import torch
import theano
import theano.tensor as T
import lasagne
from model import Generator
parser = argparse.ArgumentParser(description='Weight transfer script')
parser.add_argument(
'--weights',
default='',
type=str,
metavar='PATH',
help='path to lasagne checkpoint (default: none)')
parser.add_argument(
'--output',
type=str,
default='./output',
help='Directory for storing PyTorch weight output')
def init_model(model, conv_weights, wscale_weights, nin_weights,
nin_wscale_weights):
for feat_layer, conv_w, wscale_w in zip(model.features, conv_weights,
wscale_weights):
# Get Conv weights and flip them (lasagne default)
curr_conv_w = np.copy(conv_w.W.get_value()[:, :, ::-1, ::-1])
feat_layer.conv.weight.data = torch.FloatTensor(curr_conv_w)
# Get WScale weights
feat_layer.wscale.scale.data = torch.FloatTensor(
wscale_w.scale.get_value().reshape(1, ))
feat_layer.wscale.b.data = torch.FloatTensor(wscale_w.b.get_value())
# Last layer has to be handeled differently, since a NIN layer was used in
# lasagne (basically 1x1 conv in PyTorch)
model.output.conv.weight.data = torch.FloatTensor(
nin_weights.W.get_value().T).unsqueeze_(2).unsqueeze_(3)
model.output.wscale.scale.data = torch.FloatTensor(
nin_wscale_weights.scale.get_value().reshape(1, ))
model.output.wscale.b.data = torch.FloatTensor(
nin_wscale_weights.b.get_value())
def compare_results(model, G, use_cuda=False):
from torch.autograd import Variable
# Create random latent vector
example_latents = np.random.randn(1, 512).astype(np.float32)
# Create theano expressions
latents_var = T.TensorType(
'float32', [False] * len(example_latents.shape))('latents_var')
lod = 0.0
images_expr = G.eval(
latents_var, min_lod=lod, max_lod=lod, ignore_unsued_inputs=True)
gen_fn = theano.function(
[latents_var], images_expr, on_unused_input='ignore')
# Generate reference image
images_ref = gen_fn(example_latents[:1])
# Use same latent vector for our model (we need [1, 512, 1, 1])
x = torch.from_numpy(example_latents[:, :, np.newaxis, np.newaxis])
if use_cuda:
x = x.cuda()
model = model.cuda()
x = Variable(x, volatile=True)
images = model(x)
if use_cuda:
images = images.cpu()
images = images.data.numpy()
print('Sum of abs error: {}'.format(np.sum(np.abs(images_ref - images))))
def run(args):
# Get lasagne weights
lasagne_weights_path = args.weights
print('Loading lasagne weights')
with open(lasagne_weights_path, "rb") as f:
_, _, G = cPickle.load(f)
# Set output layer
lasagne_output_layer = G.find_layer('Glod0S')
# Get all layers up to output layer
lasagne_layers = lasagne.layers.get_all_layers(lasagne_output_layer)
# Get weigths for each layer type
conv_weights = [l for l in lasagne_layers if 'Conv' in str(l)]
# Skip last wscale layer weights, since these belong to the NIN layer
wscale_weights = [l for l in lasagne_layers if 'WScale' in str(l)][:-1]
# Get NIN weights (these should be the two last layers)
nin_weights = lasagne_layers[-2]
nin_wscale_weights = lasagne_layers[-1] # get last wscale layer weight
print('Initializing PyTorch model')
model = Generator()
init_model(model, conv_weights, wscale_weights, nin_weights,
nin_wscale_weights)
if args.output:
_, model_name = os.path.split(args.weights)
model_name = model_name.replace('.pkl', '.pth')
output_path = os.path.join(args.output, model_name)
print('Saving model to {}'.format(output_path))
torch.save(model.state_dict(), output_path)
def main():
args = parser.parse_args()
if not args.weights:
print('No lasagne checkpoint defined. Exiting...')
return
if not os.path.exists(args.output):
os.mkdir(args.output)
run(args)
if __name__ == '__main__':
main()