-
Notifications
You must be signed in to change notification settings - Fork 0
/
pytorch_i3d.py
353 lines (292 loc) · 13.9 KB
/
pytorch_i3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import os
import sys
from collections import OrderedDict
class MaxPool3dSamePadding(nn.MaxPool3d):
def compute_pad(self, dim, s):
if s % self.stride[dim] == 0:
return max(self.kernel_size[dim] - self.stride[dim], 0)
else:
return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
(batch, channel, t, h, w) = x.size()
#print t,h,w
out_t = np.ceil(float(t) / float(self.stride[0]))
out_h = np.ceil(float(h) / float(self.stride[1]))
out_w = np.ceil(float(w) / float(self.stride[2]))
#print out_t, out_h, out_w
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
#print pad_t, pad_h, pad_w
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
#print x.size()
#print pad
x = F.pad(x, pad)
return super(MaxPool3dSamePadding, self).forward(x)
class Unit3D(nn.Module):
def __init__(self, in_channels,
output_channels,
kernel_shape=(1, 1, 1),
stride=(1, 1, 1),
padding=0,
activation_fn=F.relu,
use_batch_norm=True,
use_bias=False,
name='unit_3d'):
"""Initializes Unit3D module."""
super(Unit3D, self).__init__()
self._output_channels = output_channels
self._kernel_shape = kernel_shape
self._stride = stride
self._use_batch_norm = use_batch_norm
self._activation_fn = activation_fn
self._use_bias = use_bias
self.name = name
self.padding = padding
self.conv3d = nn.Conv3d(in_channels=in_channels,
out_channels=self._output_channels,
kernel_size=self._kernel_shape,
stride=self._stride,
padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function
bias=self._use_bias)
if self._use_batch_norm:
self.bn = nn.BatchNorm3d(self._output_channels, eps=0.001, momentum=0.01)
def compute_pad(self, dim, s):
if s % self._stride[dim] == 0:
return max(self._kernel_shape[dim] - self._stride[dim], 0)
else:
return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
(batch, channel, t, h, w) = x.size()
#print t,h,w
out_t = np.ceil(float(t) / float(self._stride[0]))
out_h = np.ceil(float(h) / float(self._stride[1]))
out_w = np.ceil(float(w) / float(self._stride[2]))
#print out_t, out_h, out_w
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
#print pad_t, pad_h, pad_w
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
#print x.size()
#print pad
x = F.pad(x, pad)
#print x.size()
x = self.conv3d(x)
if self._use_batch_norm:
x = self.bn(x)
if self._activation_fn is not None:
x = self._activation_fn(x)
return x
class InceptionModule(nn.Module):
def __init__(self, in_channels, out_channels, name):
super(InceptionModule, self).__init__()
self.b0 = Unit3D(in_channels=in_channels, output_channels=out_channels[0], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_0/Conv3d_0a_1x1')
self.b1a = Unit3D(in_channels=in_channels, output_channels=out_channels[1], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_1/Conv3d_0a_1x1')
self.b1b = Unit3D(in_channels=out_channels[1], output_channels=out_channels[2], kernel_shape=[3, 3, 3],
name=name+'/Branch_1/Conv3d_0b_3x3')
self.b2a = Unit3D(in_channels=in_channels, output_channels=out_channels[3], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_2/Conv3d_0a_1x1')
self.b2b = Unit3D(in_channels=out_channels[3], output_channels=out_channels[4], kernel_shape=[3, 3, 3],
name=name+'/Branch_2/Conv3d_0b_3x3')
self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
stride=(1, 1, 1), padding=0)
self.b3b = Unit3D(in_channels=in_channels, output_channels=out_channels[5], kernel_shape=[1, 1, 1], padding=0,
name=name+'/Branch_3/Conv3d_0b_1x1')
self.name = name
def forward(self, x):
b0 = self.b0(x)
b1 = self.b1b(self.b1a(x))
b2 = self.b2b(self.b2a(x))
b3 = self.b3b(self.b3a(x))
return torch.cat([b0,b1,b2,b3], dim=1)
class InceptionI3d(nn.Module):
"""Inception-v1 I3D architecture.
The model is introduced in:
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Joao Carreira, Andrew Zisserman
https://arxiv.org/pdf/1705.07750v1.pdf.
See also the Inception architecture, introduced in:
Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
http://arxiv.org/pdf/1409.4842v1.pdf.
"""
# Endpoints of the model in order. During construction, all the endpoints up
# to a designated `final_endpoint` are returned in a dictionary as the
# second return value.
VALID_ENDPOINTS = (
'Conv3d_1a_7x7',
'MaxPool3d_2a_3x3',
'Conv3d_2b_1x1',
'Conv3d_2c_3x3',
'MaxPool3d_3a_3x3',
'Mixed_3b',
'Mixed_3c',
'MaxPool3d_4a_3x3',
'Mixed_4b',
'Mixed_4c',
'Mixed_4d',
'Mixed_4e',
'Mixed_4f',
'MaxPool3d_5a_2x2',
'Mixed_5b',
'Mixed_5c',
'Logits',
'Predictions',
)
def __init__(self, num_classes=400, spatial_squeeze=True,
final_endpoint='Logits', name='inception_i3d', in_channels=3, dropout_keep_prob=0.5):
"""Initializes I3D model instance.
Args:
num_classes: The number of outputs in the logit layer (default 400, which
matches the Kinetics dataset).
spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
before returning (default True).
final_endpoint: The model contains many possible endpoints.
`final_endpoint` specifies the last endpoint for the model to be built
up to. In addition to the output at `final_endpoint`, all the outputs
at endpoints up to `final_endpoint` will also be returned, in a
dictionary. `final_endpoint` must be one of
InceptionI3d.VALID_ENDPOINTS (default 'Logits').
name: A string (optional). The name of this module.
Raises:
ValueError: if `final_endpoint` is not recognized.
"""
if final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError('Unknown final endpoint %s' % final_endpoint)
super(InceptionI3d, self).__init__()
self._num_classes = num_classes
self._spatial_squeeze = spatial_squeeze
self._final_endpoint = final_endpoint
self.logits = None
if self._final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError('Unknown final endpoint %s' % self._final_endpoint)
self.end_points = {}
end_point = 'Conv3d_1a_7x7'
self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7],
stride=(2, 2, 2), padding=(3,3,3), name=name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_2a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Conv3d_2b_1x1'
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0,
name=name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Conv3d_2c_3x3'
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1,
name=name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_3a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Mixed_3b'
self.end_points[end_point] = InceptionModule(192, [64,96,128,16,32,32], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_3c'
self.end_points[end_point] = InceptionModule(256, [128,128,192,32,96,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_4a_3x3'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(2, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4b'
self.end_points[end_point] = InceptionModule(128+192+96+64, [192,96,208,16,48,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4c'
self.end_points[end_point] = InceptionModule(192+208+48+64, [160,112,224,24,64,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4d'
self.end_points[end_point] = InceptionModule(160+224+64+64, [128,128,256,24,64,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4e'
self.end_points[end_point] = InceptionModule(128+256+64+64, [112,144,288,32,64,64], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_4f'
self.end_points[end_point] = InceptionModule(112+288+64+64, [256,160,320,32,128,128], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'MaxPool3d_5a_2x2'
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(2, 2, 2),
padding=0)
if self._final_endpoint == end_point: return
end_point = 'Mixed_5b'
self.end_points[end_point] = InceptionModule(256+320+128+128, [256,160,320,32,128,128], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Mixed_5c'
self.end_points[end_point] = InceptionModule(256+320+128+128, [384,192,384,48,128,128], name+end_point)
if self._final_endpoint == end_point: return
end_point = 'Logits'
self.avg_pool = nn.AvgPool3d(kernel_size=[10, 7, 7],
stride=(1, 1, 1))
self.sigmoid = nn.Sigmoid()
self.dropout = nn.Dropout(dropout_keep_prob)
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name='logits')
self.build()
def replace_logits(self, num_classes):
self._num_classes = num_classes
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name='logits')
def build(self):
for k in self.end_points.keys():
self.add_module(k, self.end_points[k])
def forward(self, x):
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x) # use _modules to work with dataparallel
x = self.logits(self.dropout(self.avg_pool(x)))
# x = self.sigmoid(x)
if self._spatial_squeeze:
logits = x.squeeze(3).squeeze(3)
# logits is batch X time X classes, which is what we want to work with
return logits.squeeze(-1)
def extract_features(self, x):
output_dict = {}
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x)
output_dict[end_point] = x
return self.avg_pool(x), output_dict
if __name__ == '__main__':
i3d = InceptionI3d(400, in_channels=3)
i3d.replace_logits(1)
i3d.cuda()
i3d = nn.DataParallel(i3d)
frames = torch.rand(1, 3, 75, 224, 224).cuda()
output = i3d(frames)
print(output)
print(output.size())