-
Notifications
You must be signed in to change notification settings - Fork 0
/
backup.tex
156 lines (142 loc) · 4.98 KB
/
backup.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
\begin{frame}{Video Encoding Frames}
\begin{figure}
\includegraphics[width=\textwidth]{figures/video-frames.pdf}
\caption{PC: https://en.wikipedia.org/wiki/Video\_compression\_picture\_types}
\end{figure}
\begin{itemize}
\item \textbf{I-frames} are the least compressible but don't require other
video frames to decode. I-frames are further compressed with
quantization.
\item \textbf{P-frames} can use data from previous frames to decompress
and are more compressible than I-frames.
\item \textbf{B-frames} can use both previous and forward frames for data
reference to get the highest amount of data compression (not an option
in live streaming).
\end{itemize}
\end{frame}
\begin{frame}{Evaluation: Resource Allocation for Multiple Applications}
\centering
\begin{figure}
\centering
\begin{subfigure}[t]{0.7\columnwidth}
\centering
\includegraphics[width=\textwidth]{figures/multitask-legend.pdf}
\end{subfigure}
\\
\vspace{1em}
\begin{subfigure}[t]{0.45\columnwidth}
\centering
\includegraphics[width=\textwidth]{figures/multitask-left.pdf}
\caption{Resource Fairness}
\label{fig:eq-bw}
\end{subfigure}
\hfill
\begin{subfigure}[t]{0.45\columnwidth}
\centering
\includegraphics[width=\textwidth]{figures/multitask-right.pdf}
\caption{Utility Fairness}
\label{fig:eq-acc}
\end{subfigure}
\end{figure}
\end{frame}
\begin{frame}{Bandwidth Fluctuations (Cellular)}
\hypertarget{cellular-variation}{}
\begin{figure}
\includegraphics[width=\textwidth]{figures/bandwidth-cellular.pdf}
\caption{Riiser, Haakon, et al. "A comparison of quality scheduling in
commercial adaptive HTTP streaming solutions on a 3G network."
Proceedings of the 4th Workshop on Mobile Video. ACM, 2012.}
\end{figure}
\end{frame}
\begin{frame}{Bandwidth Fluctuations (WiFi)}
\footnotesize
\begin{figure}
\includegraphics[width=0.7\textwidth]{figures/bandwidth-wifi.pdf}
\caption{Biswas et al, Cisco Meraki, Large-scale Measurements of Wireless
Network Behavior, SIGCOMM'15. Two randomly chosen links.}
\end{figure}
\hyperlink{aws-variation}{Continue with the main slides}.
\end{frame}
\begin{frame}{Augmented Reality}
\begin{itemize}
\item Training and testing data characteristics
\begin{itemize}
\item 1920x1080 resolution with 30 FPS
\item training: 707 frames (23.5 seconds), testing: 1384 frames (46 seconds)
\end{itemize}
\item Object Recognition
\begin{itemize}
\item Darknet: Open Source Neural Networks in C
\item Developed by Joseph Redmon, "Do whatever you want with it" license
\item It supports CPU/GPU
\item In this work, I am using a pre-trained model with Coco dataset
\end{itemize}
\item Other systems such as TensorFlow, Caffe would also work
\end{itemize}
\end{frame}
\begin{frame}{IOU and F1}
\hypertarget{iou-f1}{}
\vspace{1em}
\begin{columns}
\column{0.5\textwidth}
Positive if intersection over union (IOU) larger than 0.5.
\[
\text{IOU} = \frac{\text{Area of Intersection}}{\text{Area of Union}}
\]
\begin{figure}
\begin{subfigure}{0.3\textwidth}
\begin{tikzpicture}
\fill[color=blue!30] (0.5, 0.5) rectangle (1, 1);
\node[draw=none] () at (1.5, 1.5) {};
\draw (0, 0) rectangle (1, 1);
\draw[densely dashed] (0.5, 0.5) rectangle (1.5, 1.5);
\end{tikzpicture}
\caption{IOU=0.14}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\begin{tikzpicture}
\fill[color=blue!30] (0.15, 0.15) rectangle (1, 1);
\node[draw=none] () at (1.5, 1.5) {};
\draw (0, 0) rectangle (1, 1);
\draw[densely dashed] (0.15, 0.15) rectangle (1.15, 1.15);
\end{tikzpicture}
\caption{IOU=0.57}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\begin{tikzpicture}
\fill[color=blue!30] (0.05, 0.05) rectangle (1, 1);
\node[draw=none] () at (1.5, 1.5) {};
\draw[densely dashed] (0.05, 0.05) rectangle (1.05, 1.05);
\draw (0, 0) rectangle (1, 1);
\end{tikzpicture}
\caption{IOU=0.82}
\end{subfigure}
\end{figure}
\column{0.5\textwidth}
F1 is the harmonic mean of precision and recall:
\begin{table}
\centering
\begin{tabular}{| c | c | c |}
\hline
& P & N \\
\hline
Y & True Positive & False Positive \\
\hline
N & True Positive & False Positive \\
\hline
\end{tabular}
\end{table}
\begin{equation*}
\begin{split}
\text{Precision} &= \frac{\text{true positive}}{\text{all positive}} \\
\text{Recall} &= \frac{\text{true positive}}{\text{all detection}} \\
\text{F1} &= \frac{2}{\frac{1}{\text{Recall}} + \frac{1}{\text{Precision}}}
\end{split}
\end{equation*}
\end{columns}
\end{frame}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "talk"
%%% TeX-engine: xetex
%%% End: