-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
53 lines (44 loc) · 1.54 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import math
import time
import cv2
import cvzone
from ultralytics import YOLO
confidence = 0.6
cap = cv2.VideoCapture(0) # For Webcam
cap.set(4, 480)
# cap = cv2.VideoCapture("../Videos/motorbikes.mp4") # For Video
model = YOLO("./models/train_17.pt")
model.to(device="cuda")
classNames = ["fake", "real"]
prev_frame_time = 0
new_frame_time = 0
while True:
new_frame_time = time.time()
success, img = cap.read()
results = model(img, stream=True, verbose=False)
for r in results:
boxes = r.boxes
for box in boxes:
# Bounding Box
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
# cv2.rectangle(img,(x1,y1),(x2,y2),(255,0,255),3)
w, h = x2 - x1, y2 - y1
# Confidence
conf = math.ceil((box.conf[0] * 100)) / 100
# Class Name
print(box)
cls = int(box.cls[0])
if conf > confidence:
if classNames[cls] == 'real':
color = (255,0, 0)
else:
color = (0, 0, 255)
cvzone.cornerRect(img, (x1, y1, w, h),colorC=color,colorR=color)
cvzone.putTextRect(img, f'{classNames[cls].upper()} {int(conf*100)}%',
(max(0, x1), max(35, y1)), scale=2, thickness=4,colorR=color,
colorB=color)
fps = 1 / (new_frame_time - prev_frame_time)
prev_frame_time = new_frame_time
cv2.imshow("Image", img)
cv2.waitKey(1)