We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
After running a code with
python -m nmt --src=sign --tgt=de --train_prefix=../Data/phoenix2014T.train --dev_prefix=../Data/phoenix2014T.dev --test_prefix=../Data/phoenix2014T.test --out_dir=../test_out/ --vocab_prefix=../Data/phoenix2014T.vocab --source_reverse=True --num_units=1000 --num_layers=4 --num_train_steps=150000 --residual=True --attention=luong --base_gpu=0 --unit_type=gru
I was encounter the error shown below
# Job id 0 # Set random seed to 285 # Loading hparams from ../test_out/hparams saving hparams to ../test_out/hparams saving hparams to ../test_out/best_bleu/hparams attention=luong attention_architecture=standard base_gpu=0 batch_size=1 beam_width=3 best_bleu=0 best_bleu_dir=../test_out/best_bleu bpe_delimiter=None colocate_gradients_with_ops=True decay_factor=0.98 decay_steps=10000 dev_prefix=../Data/phoenix2014T.dev dropout=0.2 encoder_type=uni eos=</s> epoch_step=0 eval_on_fly=True forget_bias=1.0 infer_batch_size=32 init_op=glorot_normal init_weight=0.1 learning_rate=1e-05 length_penalty_weight=0.0 log_device_placement=False max_gradient_norm=5.0 max_train=0 metrics=[u'bleu'] num_buckets=0 num_embeddings_partitions=0 num_gpus=1 num_layers=4 num_residual_layers=3 num_train_steps=150000 num_units=1000 optimizer=adam out_dir=../test_out/ pass_hidden_state=True random_seed=285 residual=True snapshot_interval=1000 sos=<s> source_reverse=True src=sign src_max_len=300 src_max_len_infer=300 start_decay_step=0 steps_per_external_eval=None steps_per_stats=100 test_prefix=../Data/phoenix2014T.test tgt=de tgt_max_len=50 tgt_max_len_infer=None tgt_vocab_file=../Data/phoenix2014T.vocab.de tgt_vocab_size=2891 time_major=True train_prefix=../Data/phoenix2014T.train unit_type=gru vocab_prefix=../Data/phoenix2014T.vocab # creating train graph ... num_layers = 4, num_residual_layers=3 cell 0 GRU DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 cell 1 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0 cell 2 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0 cell 3 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0 cell 0 GRU DropoutWrapper, dropout=0.2 DeviceWrapper, device=/gpu:0 cell 1 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0 cell 2 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0 cell 3 GRU DropoutWrapper, dropout=0.2 ResidualWrapper DeviceWrapper, device=/gpu:0 start_decay_step=0, learning_rate=1e-05, decay_steps 10000, decay_factor 0.98 # Trainable variables conv1/weights:0, (11, 11, 3, 96), /device:GPU:0 conv1/biases:0, (96,), /device:GPU:0 conv2/weights:0, (5, 5, 48, 256), /device:GPU:0 conv2/biases:0, (256,), /device:GPU:0 conv3/weights:0, (3, 3, 256, 384), /device:GPU:0 conv3/biases:0, (384,), /device:GPU:0 conv4/weights:0, (3, 3, 192, 384), /device:GPU:0 conv4/biases:0, (384,), /device:GPU:0 conv5/weights:0, (3, 3, 192, 256), /device:GPU:0 conv5/biases:0, (256,), /device:GPU:0 fc6/weights:0, (9216, 4096), /device:GPU:0 fc6/biases:0, (4096,), /device:GPU:0 fc7/weights:0, (4096, 4096), /device:GPU:0 fc7/biases:0, (4096,), /device:GPU:0 embeddings/decoder/embedding_decoder:0, (2891, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (5096, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (5096, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/memory_layer/kernel:0, (1000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (3000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (3000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/output_projection/kernel:0, (1000, 2891), /device:GPU:0 # creating eval graph ... num_layers = 4, num_residual_layers=3 cell 0 GRU DeviceWrapper, device=/gpu:0 cell 1 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 2 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 3 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 0 GRU DeviceWrapper, device=/gpu:0 cell 1 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 2 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 3 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 start_decay_step=0, learning_rate=1e-05, decay_steps 10000, decay_factor 0.98 # Trainable variables conv1/weights:0, (11, 11, 3, 96), /device:GPU:0 conv1/biases:0, (96,), /device:GPU:0 conv2/weights:0, (5, 5, 48, 256), /device:GPU:0 conv2/biases:0, (256,), /device:GPU:0 conv3/weights:0, (3, 3, 256, 384), /device:GPU:0 conv3/biases:0, (384,), /device:GPU:0 conv4/weights:0, (3, 3, 192, 384), /device:GPU:0 conv4/biases:0, (384,), /device:GPU:0 conv5/weights:0, (3, 3, 192, 256), /device:GPU:0 conv5/biases:0, (256,), /device:GPU:0 fc6/weights:0, (9216, 4096), /device:GPU:0 fc6/biases:0, (4096,), /device:GPU:0 fc7/weights:0, (4096, 4096), /device:GPU:0 fc7/biases:0, (4096,), /device:GPU:0 embeddings/decoder/embedding_decoder:0, (2891, 1000), dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (5096, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (5096, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/memory_layer/kernel:0, (1000, 1000), dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (3000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (3000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/output_projection/kernel:0, (1000, 2891), /device:GPU:0 # creating infer graph ... num_layers = 4, num_residual_layers=3 cell 0 GRU DeviceWrapper, device=/gpu:0 cell 1 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 2 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 3 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 0 GRU DeviceWrapper, device=/gpu:0 cell 1 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 2 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 cell 3 GRU ResidualWrapper DeviceWrapper, device=/gpu:0 start_decay_step=0, learning_rate=1e-05, decay_steps 10000, decay_factor 0.98 # Trainable variables conv1/weights:0, (11, 11, 3, 96), /device:GPU:0 conv1/biases:0, (96,), /device:GPU:0 conv2/weights:0, (5, 5, 48, 256), /device:GPU:0 conv2/biases:0, (256,), /device:GPU:0 conv3/weights:0, (3, 3, 256, 384), /device:GPU:0 conv3/biases:0, (384,), /device:GPU:0 conv4/weights:0, (3, 3, 192, 384), /device:GPU:0 conv4/biases:0, (384,), /device:GPU:0 conv5/weights:0, (3, 3, 192, 256), /device:GPU:0 conv5/biases:0, (256,), /device:GPU:0 fc6/weights:0, (9216, 4096), /device:GPU:0 fc6/biases:0, (4096,), /device:GPU:0 fc7/weights:0, (4096, 4096), /device:GPU:0 fc7/biases:0, (4096,), /device:GPU:0 embeddings/decoder/embedding_decoder:0, (2891, 1000), dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (5096, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (5096, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/encoder/rnn/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/memory_layer/kernel:0, (1000, 1000), dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/kernel:0, (3000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/kernel:0, (3000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_0/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_1/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_2/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/kernel:0, (2000, 2000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/gates/bias:0, (2000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/attention/multi_rnn_cell/cell_3/gru_cell/candidate/bias:0, (1000,), /device:GPU:0 dynamic_seq2seq/decoder/attention/attention_layer/kernel:0, (2000, 1000), /device:GPU:0 dynamic_seq2seq/decoder/output_projection/kernel:0, (1000, 2891), # log_file=../test_out/log_1557087524 created train model with fresh parameters, time 5.24s created infer model with fresh parameters, time 0.96s # 301 src: /home/ubuntu/fullFrame-227x227px/dev/20June_2011_Monday_heute-6514/ ref: und eher wechselhaft geht es mit unserem wetter auch weiter . nmt: stunden bedeckt bedeckt bedeckt bedeckt bedeckt bedeckt informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren informieren created eval model with fresh parameters, time 0.76s eval dev: perplexity 4663.06, time 3785s, Sun May 5 21:22:18 2019. eval test: perplexity 4627.91, time 4630s, Sun May 5 22:39:29 2019. created infer model with fresh parameters, time 0.85s # Start step 0, lr 1e-05, Sun May 5 22:39:30 2019 # Init train iterator, skipping 0 elements terminate called after throwing an instance of 'std::out_of_range' what(): basic_string::substr: __pos (which is 140) > this->size() (which is 0)
Could you help me with this please?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
After running a code with
python -m nmt --src=sign --tgt=de --train_prefix=../Data/phoenix2014T.train --dev_prefix=../Data/phoenix2014T.dev --test_prefix=../Data/phoenix2014T.test --out_dir=../test_out/ --vocab_prefix=../Data/phoenix2014T.vocab --source_reverse=True --num_units=1000 --num_layers=4 --num_train_steps=150000 --residual=True --attention=luong --base_gpu=0 --unit_type=gru
I was encounter the error shown below
Could you help me with this please?
The text was updated successfully, but these errors were encountered: