-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDualQuaternion2.py
executable file
·421 lines (336 loc) · 15.7 KB
/
DualQuaternion2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
"""
DualQuaternions operations, interpolation, conversions
attempt to substitute pyquaternion with np.quaternion
Author: Achille Verheye
Edited by: Nefeli Andreou
License: MIT
"""
import numpy as np
import quaternion
import json
Quaternion = quaternion.quaternion
class DualQuaternion(object):
"""
dual number representation of quaternions to represent rigid transforms
A quaternion q can be represented as q_r + q_d * eps with eps^2 = 0 and eps != 0
Several ways to instantiate:
$ dq = DualQuaternion(q_rot, q_dual) with both arguments instance of numpy-quaternion
$ dq = DualQuaternion.from_dq_array(np.array([q_rw, q_rx, q_ry, q_rz, q_tx, q_ty, q_tz])
$ dq = DualQuaternion.from_homogeneous_matrix([[r11, r12, r13, tx],
[r21, r22, r23, ty],
[r31, r32, r33, tz],
[ 0, 0, 0, 1])
$ dq = DualQuaternion.from_quat_pose_array([q_w, q_x, q_y, q_z, x, y, z])
$ dq = DualQuaternion.from_translation_vector([x y z])
$ dq = DualQuaternion.identity() --> zero translation, unit rotation
$ dq = DualQuaternion.from_screw([lx, ly, lz], [mx, my, mz], theta, d)
The underlying representation for a single quaternion uses the format [w x y z]
The rotation part (non-dual) will always be normalized.
"""
def __init__(self, q_r, q_d, normalize=False):
if not isinstance(q_r, Quaternion) or not isinstance(q_d, Quaternion):
raise ValueError("q_r and q_d must be of type pyquaternion.Quaternion. Instead received: {} and {}".format(
type(q_r), type(q_d)))
if normalize:
self.q_d = q_d / np.sqrt(q_r.norm())
self.q_r = q_r.normalized()
else:
self.q_r = q_r
self.q_d = q_d
def __str__(self):
return "rotation: {}, translation: {}, \n".format(repr(self.q_r), repr(self.q_d)) + \
"translation vector: {}".format(repr(self.translation()))
def __repr__(self):
return "<DualQuaternion: {0} + {1}e>".format(repr(self.q_r), repr(self.q_d))
def __mul__(self, other):
"""
Dual quaternion multiplication
:param other: right hand side of the multiplication: DualQuaternion instance
:return product: DualQuaternion object. Math:
dq1 * dq2 = dq1_r * dq2_r + (dq1_r * dq2_d + dq1_d * dq2_r) * eps
"""
q_r_prod = self.q_r * other.q_r
q_d_prod = self.q_r * other.q_d + self.q_d * other.q_r
product = DualQuaternion(q_r_prod, q_d_prod)
return product
def __imul__(self, other):
"""
Dual quaternion multiplication with self-assignment: dq1 *= dq2
See __mul__
"""
return self.__mul__(other)
def __rmul__(self, other):
"""Multiplication with a scalar
:param other: scalar
"""
return DualQuaternion(self.q_r * other, self.q_d * other)
def __div__(self, other):
"""
Dual quaternion division. See __truediv__
:param other: DualQuaternion instance
:return: DualQuaternion instance
"""
return self.__truediv__(other)
def __truediv__(self, other):
"""
Dual quaternion division.
:param other: DualQuaternion instance
:return: DualQuaternion instance
"""
other_r_sq = other.q_r * other.q_r
prod_r = self.q_r * other.q_r / other_r_sq
prod_d = (other.q_r * self.q_d - self.q_r * other.q_d) / other_r_sq
return DualQuaternion(prod_r, prod_d)
def __add__(self, other):
"""
Dual Quaternion addition.
:param other: dual quaternion
:return: DualQuaternion(self.q_r + other.q_r, self.q_d + other.q_d)
"""
return DualQuaternion(self.q_r + other.q_r, self.q_d + other.q_d)
def __eq__(self, other):
return (self.q_r == other.q_r or self.q_r == -other.q_r) \
and (self.q_d == other.q_d or self.q_d == -other.q_d)
def __ne__(self, other):
return not self == other
def transform_point(self, point_xyz):
"""
Convenience function to apply the transformation to a given vector.
dual quaternion way of applying a rotation and translation using matrices Rv + t or H[v; 1]
This works out to be: sigma @ (1 + ev) @ sigma.combined_conjugate()
If we write self = p + eq, this can be expanded to 1 + eps(rvr* + t)
with r = p and t = 2qp* which should remind you of Rv + t and the quaternion
transform_point() equivalent (rvr*)
Does not check frames - make sure you do this yourself.
:param point_xyz: list or np.array in order: [x y z]
:return: vector of length 3
"""
dq_point = DualQuaternion.from_dq_array([1, 0, 0, 0,
0, point_xyz[0], point_xyz[1], point_xyz[2]])
res_dq = self * dq_point * self.combined_conjugate()
return res_dq.dq_array()[5:]
@classmethod
def from_dq_array(cls, r_wxyz_t_wxyz):
"""
Create a DualQuaternion instance from two quaternions in list format
:param r_wxyz_t_wxyz: np.array or python list: np.array([q_rw, q_rx, q_ry, q_rz, q_tx, q_ty, q_tz]
"""
#todo
return cls(Quaternion(*r_wxyz_t_wxyz[:4]), Quaternion(*r_wxyz_t_wxyz[4:]), normalize=True)
@classmethod
def from_homogeneous_matrix(cls, arr):
"""
Create a DualQuaternion instance from a 4 by 4 homogeneous transformation matrix
:param arr: 4 by 4 list or np.array
"""
q_r = quaternion.from_rotation_matrix(arr[:3, :3]).normalized()
quat_pose_array = np.zeros(7)
quat_pose_array[:4] = np.array([q_r.w, q_r.x, q_r.y, q_r.z])
quat_pose_array[4:] = arr[:3, 3]
return cls.from_quat_pose_array(quat_pose_array)
@classmethod
def from_quat_pose_array(cls, r_wxyz_t_xyz):
"""
Create a DualQuaternion object from an array of a quaternion r and translation t
sigma = r + eps/2 * t * r
:param r_wxyz_t_xyz: list or np.array in order: [q_rw, q_rx, q_ry, q_rz, tx, ty, tz]
"""
q_r = Quaternion(*r_wxyz_t_xyz[:4]).normalized()
q_d = 0.5 * Quaternion(0., *r_wxyz_t_xyz[4:]) * q_r
return cls(q_r, q_d)
@classmethod
def from_translation_vector(cls, t_xyz):
"""
Create a DualQuaternion object from a cartesian point
:param t_xyz: list or np.array in order: [x y z]
"""
return cls.from_quat_pose_array(np.append(np.array([1., 0., 0., 0.]), np.array(t_xyz)))
@classmethod
def identity(cls):
return cls(Quaternion(1., 0., 0., 0.), Quaternion(0., 0., 0., 0.))
def quaternion_conjugate(self):
"""
Return the individual quaternion conjugates (qr, qd)* = (qr*, qd*)
This is equivalent to inverse of a homogeneous matrix. It is in applying
a transformation to a line expressed in Plucker coordinates.
See also DualQuaternion.dual_conjugate() and DualQuaternion.combined_conjugate().
"""
return DualQuaternion(self.q_r.conjugate(), self.q_d.conjugate())
def dual_number_conjugate(self):
"""
Return the dual number conjugate (qr, qd)* = (qr, -qd)
This form of conjugate is seldom used.
See also DualQuaternion.quaternion_conjugate() and DualQuaternion.combined_conjugate().
"""
return DualQuaternion(self.q_r, -self.q_d)
def combined_conjugate(self):
"""
Return the combination of the quaternion conjugate and dual number conjugate
(qr, qd)* = (qr*, -qd*)
This form is commonly used to transform a point
See also DualQuaternion.dual_number_conjugate() and DualQuaternion.quaternion_conjugate().
"""
return DualQuaternion(self.q_r.conjugate(), -self.q_d.conjugate())
def inverse(self):
"""
Return the dual quaternion inverse
For unit dual quaternions dq.inverse = dq.quaternion_conjugate()
"""
q_r_inv = self.q_r.inverse()
return DualQuaternion(q_r_inv, -q_r_inv * self.q_d * q_r_inv)
def is_normalized(self):
"""Check if the dual quaternion is normalized"""
if np.isclose(np.sqrt(self.q_r.norm()), 0):
return True
rot_normalized = np.isclose(np.sqrt(self.q_r.norm()), 1)
trans_normalized = (self.q_d / np.sqrt(self.q_r.norm())) == self.q_d
return rot_normalized and trans_normalized
def normalize(self):
"""
Normalize this dual quaternion
Modifies in place, so this will not preserve self
"""
normalized = self.normalized()
self.q_r = normalized.q_r
self.q_d = normalized.q_d
def pow(self, exponent):
"""self^exponent
:param exponent: single float
"""
exponent = float(exponent)
theta = 2 * np.arccos(self.q_r.w)
if np.isclose(theta, 0):
return DualQuaternion.from_translation_vector(exponent * np.array(self.translation()))
else:
s0 = self.q_r.vector / np.sin(theta / 2)
d = -2. * self.q_d.w / np.sin(theta / 2)
se = (self.q_d.vector - s0 * d / 2 * np.cos(theta / 2)) / np.sin(theta / 2)
q_r = Quaternion(scalar=np.cos(exponent * theta / 2),
vector=np.sin(exponent * theta / 2) * s0)
q_d = Quaternion(scalar=-exponent * d / 2 * np.sin(exponent * theta / 2),
vector=exponent * d / 2 * np.cos(exponent * theta / 2) * s0 + np.sin(
exponent * theta / 2) * se)
return DualQuaternion(q_r, q_d)
@classmethod
def sclerp(cls, start, stop, t):
"""Screw Linear Interpolation
Generalization of Quaternion slerp (Shoemake et al.) for rigid body motions
ScLERP guarantees both shortest path (on the manifold) and constant speed
interpolation and is independent of the choice of coordinate system.
ScLERP(dq1, dq2, t) = dq1 * dq12^t where dq12 = dq1^-1 * dq2
:param start: DualQuaternion instance
:param stop: DualQuaternion instance
:param t: fraction betweem [0, 1] representing how far along and around the
screw axis to interpolate
"""
# ensure we always find closest solution. See Kavan and Zara 2005
if (start.q_r * stop.q_r).w < 0:
start.q_r *= -1
return start * (start.inverse() * stop).pow(t)
def nlerp(self, other, t):
raise NotImplementedError()
def save(self, path):
"""Save the transformation to file
:param path: absolute folder path and filename + extension
:raises IOError: when the path does not exist
"""
with open(path, 'w') as outfile:
json.dump(self.as_dict(), outfile)
@classmethod
def from_file(cls, path):
"""Load a DualQuaternion from file"""
with open(path) as json_file:
qdict = json.load(json_file)
return cls.from_dq_array([qdict['r_w'], qdict['r_x'], qdict['r_y'], qdict['r_z'],
qdict['d_w'], qdict['d_x'], qdict['d_y'], qdict['d_z']])
def homogeneous_matrix(self):
"""Homogeneous 4x4 transformation matrix from the dual quaternion
:return 4 by 4 np.array
"""
# homogeneous_mat = self.q_r.transformation_matrix
homogeneous_mat = np.eye(4)
homogeneous_mat[:3, :3] = quaternion.as_rotation_matrix(self.q_r)
homogeneous_mat[:3, 3] = np.array(self.translation())
return homogeneous_mat
def quat_pose_array(self):
"""
Get the list version of the dual quaternion as a quaternion followed by the translation vector
given a dual quaternion p + eq, the rotation in quaternion form is p and the translation in
quaternion form is 2qp*
:return: list [q_w, q_x, q_y, q_z, x, y, z]
"""
return [self.q_r.w, self.q_r.x, self.q_r.y, self.q_r.z] + self.translation()
def dq_array(self):
"""
Get the list version of the dual quaternion as the rotation quaternion followed by the translation quaternion
:return: list [q_rw, q_rx, q_ry, q_rz, q_tx, q_ty, q_tz]
"""
return [self.q_r.w, self.q_r.x, self.q_r.y, self.q_r.z,
self.q_d.w, self.q_d.x, self.q_d.y, self.q_d.z]
def translation(self):
"""Get the translation component of the dual quaternion in vector form
:return: list [x y z]
"""
mult = (2.0 * self.q_d) * self.q_r.normalized().conjugate()
return [mult.x, mult.y, mult.z]
def normalized(self):
"""Return a copy of the normalized dual quaternion"""
norm_qr = np.sqrt(self.q_r.norm())
# print(norm_qr)
return DualQuaternion(self.q_r / norm_qr, self.q_d / norm_qr)
def as_dict(self):
"""dictionary containing the dual quaternion"""
return {'r_w': self.q_r.w, 'r_x': self.q_r.x, 'r_y': self.q_r.y, 'r_z': self.q_r.z,
'd_w': self.q_d.w, 'd_x': self.q_d.x, 'd_y': self.q_d.y, 'd_z': self.q_d.z}
def screw(self):
"""
Get the screw parameters for this dual quaternion.
Chasles' theorem (Mozzi, screw theorem) states that any rigid displacement is equivalent to a rotation about
some line and a translation in the direction of the line. This line does not go through the origin!
This function returns the Plucker coordinates for the screw axis (l, m) as well as the amount of rotation
and translation, theta and d.
If the dual quaternion represents a pure translation, theta will be zero and the screw moment m will be at
infinity.
:return: l (unit length), m, theta, d
:rtype np.array(3), np.array(3), float, float
"""
# start by extracting theta and l directly from the real part of the dual quaternion
theta = self.q_r.angle
theta_close_to_zero = np.isclose(theta, 0)
t = np.array(self.translation())
if not theta_close_to_zero:
l = self.q_r.vector / np.sin(theta / 2) # since q_r is normalized, l should be normalized too
# displacement d along the line is the projection of the translation onto the line l
d = np.dot(t, l)
# m is a bit more complicated. Derivation see K. Daniliidis, Hand-eye calibration using Dual Quaternions
m = 0.5 * (np.cross(t, l) + np.cross(l, np.cross(t, l) / np.tan(theta / 2)))
else:
# l points along the translation axis
d = np.linalg.norm(t)
if not np.isclose(d, 0): # unit transformation
l = t / d
else:
l = (0, 0, 0)
m = np.array([np.inf, np.inf, np.inf])
return l, m, theta, d
@classmethod
def crew(cls, l, m, theta, d):
"""
Create a DualQuaternion from screw parameters
:param l: unit vector defining screw axis direction
:param m: screw axis m|
oment, perpendicular to l and through the origin
:param theta: screw angle; rotation around the screw axis
:param d: displacement along the screw axis
"""
l = np.array(l)
m = np.array(m)
if not np.isclose(np.linalg.norm(l), 1):
raise AttributeError("Expected l to be a unit vector, received {} with norm {} instead"
.format(l, np.linalg.norm(l)))
theta = float(theta)
d = float(d)
q_r = Quaternion(scalar=np.cos(theta / 2), vector=np.sin(theta / 2) * l)
q_d = Quaternion(scalar=-d / 2 * np.sin(theta / 2),
vector=np.sin(theta / 2) * m + d / 2 * np.cos(theta / 2) * l)
return cls(q_r, q_d)