-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic.py
542 lines (460 loc) · 23.6 KB
/
logistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import glob
import argparse
import numpy as np
import time
from os import path
from warnings import simplefilter
# ignore all future warnings
simplefilter(action='ignore', category=FutureWarning)
np.seterr(all='ignore')
import util
import random
def sigmoid(x):
return 1. / (1 + np.exp(-x))
def softmax(x):
e = np.exp(x - np.max(x)) # prevent overflow
if e.ndim == 1:
return e / np.sum(e, axis=0)
else:
return e / np.array([np.sum(e, axis=1)]).T # ndim = 2
class LogisticRegression(object):
def __init__(self, dim, num_class):
self.binary = num_class == 1
self.W = np.zeros((dim, num_class)) # initialize W 0
self.b = np.zeros(num_class) # initialize bias 0
self.params = np.array([self.W, self.b])
def activation(self, input, params=None):
W, b = params if params is not None else self.params
if self.binary:
return sigmoid(np.dot(input, W) + b)
else:
return softmax(np.dot(input, W) + b)
# regularized_negative_log_likelihood
def loss(self, input, label, l2_reg=0.00, params=None):
sigmoid_activation = self.activation(input, params)
cross_entropy = - np.mean(np.sum(label * np.log(sigmoid_activation) +
(1 - label) * np.log(1 - sigmoid_activation), axis=1))
return cross_entropy + l2_reg * np.linalg.norm(self.W) ** 2 / 2
def predict(self, input, params=None):
return self.activation(input, params)
def accuracy(self, input, label, params=None):
if self.binary:
# Note: label is not one hot encoded
return np.mean(np.isclose(np.rint(self.predict(input, params)), label))
else:
return np.mean(np.argmax(self.predict(input, params), axis=1) == np.argmax(label, axis=1))
def gradient(self, input, label, l2_reg=0.00, params=None):
p_y_given_x = self.activation(input, params)
d_y = label - p_y_given_x
d_W = -np.dot(np.reshape(input, (1, -1)).T, np.reshape(d_y.T, (1, -1))) - l2_reg * self.W
d_b = -np.mean(d_y, axis=0)
return np.array([d_W, d_b])
class Optimizer(object):
@staticmethod
def order_elements(shuffle, n, seed=1234):
if shuffle == 0:
indices = np.arange(n)
elif shuffle == 1:
indices = np.random.permutation(n)
elif shuffle == 2:
indices = np.random.randint(0, n, n)
else: # fixed permutation
np.random.seed(seed)
indices = np.random.permutation(n)
return indices
def optimize(self, method, model, data, labels, weights, num_epochs, shuffle, lr, l2_reg):
if method == 'sgd':
return self.sgd(model, data, labels, weights, num_epochs, shuffle, lr, l2_reg)
elif method == 'saga':
return self.saga(model, data, labels, weights, num_epochs, shuffle, lr, l2_reg)
elif method == 'svrg':
return self.svrg(model, data, labels, weights, num_epochs, shuffle, lr, l2_reg)
else:
print('Optimizer is not defined!')
def sgd(self, model, data, labels, weights, num_epochs, shuffle, lr, l2_reg):
n = len(data)
W = [[]] * num_epochs
T = np.empty(num_epochs)
time.sleep(.1)
start_epoch = time.process_time()
for epoch in range(num_epochs):
indices = self.order_elements(shuffle, n)
for i in indices:
grads = model.gradient(data[i], labels[i], l2_reg / n) * weights[i]
model.params -= lr[epoch] * grads
W[epoch] = model.params.copy()
T[epoch] = (time.process_time() - start_epoch)
return W, T
def saga(self, model, data, labels, weights, num_epochs, shuffle, lr, l2_reg):
n = len(data)
W = [[]] * num_epochs
T = np.empty(num_epochs)
time.sleep(.1)
start_epoch = time.process_time()
saved_grads = np.array([model.gradient(data[i], labels[i], l2_reg / n) * weights[i] for i in range(n)])
avg_saved_grads = saved_grads.mean(axis=0)
for epoch in range(num_epochs):
indices = self.order_elements(shuffle, n)
for i in indices:
grads = model.gradient(data[i], labels[i], l2_reg / n) * weights[i]
model.params -= lr[epoch] * (grads - saved_grads[i] + avg_saved_grads)
avg_saved_grads += (grads - saved_grads[i]) / n
saved_grads[i] = grads
W[epoch] = model.params.copy()
T[epoch] = (time.process_time() - start_epoch)
return W, T
def svrg(self, model, data, labels, weights, num_epochs, shuffle, lr, l2_reg):
n = len(data)
W = [[]] * num_epochs
T = np.empty(num_epochs)
time.sleep(.1)
start_epoch = time.process_time()
for epoch in range(num_epochs):
init_grads = np.array([model.gradient(data[i], labels[i], l2_reg / n) * weights[i] for i in range(n)])
avg_init_grads = np.mean(init_grads, axis=0)
indices = self.order_elements(shuffle, n)
for i in indices:
grads = model.gradient(data[i], labels[i], l2_reg / n) * weights[i]
model.params -= lr[epoch] * (grads - init_grads[i] + avg_init_grads)
W[epoch] = model.params.copy()
T[epoch] = (time.process_time() - start_epoch)
return W, T
def load_dataset(dataset, normalize=False):
DATASET_DIR = '/tmp/data/'
if dataset == 'covtype':
print(f'Loading {dataset}')
X, y = util.load_dataset('covtype', DATASET_DIR)
N = len(X)
NUM_TRAINING, NUM_VALIDATION = int(N / 2), int(N / 2) + int(N / 4)
# NUM_TRAINING, NUM_VALIDATION = int(N / 256), int(N / 256) + int(N / 512)
sample = np.arange(N)
np.random.seed(0)
np.random.shuffle(sample)
train_sample, val_sample, test_sample = \
sample[:NUM_TRAINING], sample[NUM_TRAINING:NUM_VALIDATION], sample[NUM_VALIDATION:]
X_train, y_train = X[train_sample, :], y[train_sample]
X_val, y_val = X[val_sample, :], y[val_sample]
X_test, y_test = X[test_sample, :], y[test_sample]
elif dataset == 'ijcnn1':
print(f'Loading {dataset}')
X_train, y_train = util.load_dataset('ijcnn1.tr', DATASET_DIR)
X_test, y_test = util.load_dataset('ijcnn1.t', DATASET_DIR)
# X_train, y_train = X_train[:500], y_train[:500]
X_val, y_val = X_test, y_test
elif dataset == 'combined':
print(f'Loading {dataset}')
X_train, y_train = util.load_dataset('combined_scale', DATASET_DIR)
X_test, y_test = util.load_dataset('combined_scale.t', DATASET_DIR)
# X_train, y_train = X_train[1:200], y_train[1:200]
X_0, y_0 = X_train[y_train == 0], y_train[y_train == 0]
X_1, y_1 = X_train[y_train == 1], y_train[y_train == 1]
X_2, y_2 = X_train[y_train == 2], y_train[y_train == 2]
X_1, y_1 = X_1[:18266], y_1[:18266]
X_2, y_2 = X_2[:18266 * 2], y_2[:18266 * 2]
X_train, y_train = np.vstack([X_0, X_1, X_2]), np.hstack([y_0, y_1, y_2])
data_mean = np.vstack([X_train, X_test]).mean(axis=0)
X_train -= data_mean
X_test -= data_mean
X_val, y_val = X_test, y_test
if dataset in ['covtype', 'ijcnn1']:
y_train = np.reshape(y_train, (-1, 1))
y_val = np.reshape(y_val, (-1, 1))
y_test = np.reshape(y_test, (-1, 1))
elif dataset == 'combined':
num_class = 3
y_train = np.eye(num_class)[y_train]
y_val = np.eye(num_class)[y_val]
y_test = np.eye(num_class)[y_test]
print(f'Training size: {len(y_train)}, Test size: {len(y_test)}')
return X_train, y_train, X_val, y_val, X_test, y_test
def get_param_range(subset_size, exp_decay, method, data):
g_range, b_range = [0], [0]
if exp_decay > 0 and data == 'ijcnn1':
if method == 'sgd':
if subset_size in [0.1, 0.2]:
g_range = np.arange(10, 30) * .001
b_range = np.arange(70, 110) * .01
elif subset_size < 1.0:
g_range = np.arange(20, 40) * .001
b_range = np.arange(70, 130) * .01
else:
g_range = np.arange(30, 40) * .001
b_range = np.arange(95, 105) * .01
elif method == 'saga':
b_range = [1]
g_range = np.arange(40, 120, 1) * .0001
elif method == 'svrg':
b_range = [1]
g_range = np.arange(30, 170) * .0001 # for 10% random
elif exp_decay > 0 and data == 'combined':
if method == 'sgd':
g_range = np.arange(10, 50) * .001
b_range = np.arange(40, 110) * .01
elif method == 'saga':
b_range = [1]
g_range = np.arange(40, 120, 1) * .0001
elif method == 'svrg':
b_range = [1]
g_range = np.arange(50, 120) * .0001
elif exp_decay > 0 and data == 'covtype':
if subset_size == .1:
g_range = np.arange(10, 34) * .001
b_range = np.arange(84, 96) * .01
if subset_size == .2:
g_range = np.arange(16, 40) * .001
b_range = np.arange(76, 92) * .01
if subset_size == .3:
g_range = np.arange(20, 52) * .001
b_range = np.arange(75, 84) * .01
if subset_size == .4:
g_range = np.arange(25, 48) * .001
b_range = np.arange(71, 82) * .01
if subset_size == .5:
g_range = np.arange(28, 50) * .001
b_range = np.arange(67, 76) * .01
if subset_size == .6:
g_range = np.arange(30, 50) * .001
b_range = np.arange(67, 75) * .01
if subset_size == .7:
g_range = np.arange(30, 48) * .001
b_range = np.arange(65, 73) * .01
if subset_size == .8:
g_range = np.arange(33, 43) * .001
b_range = np.arange(63, 68) * .01
if subset_size == .9:
g_range = np.arange(39, 44) * .001
b_range = np.arange(59, 66) * .01
if subset_size == 1:
g_range = np.arange(40, 52) * .001
b_range = np.arange(50, 55) * .01
else:
g_range = [0.1, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.25, 0.3, 0.35]
b_range = [0.7, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.9, 0.95]
if subset_size < 1:
g_range = [0.000035, 0.009, 0.01, 0.013, 0.015, 0.017, 0.018, 0.019, 0.02, 0.025, 0.03]
b_range = np.arange(0, 19) * .01
# fixed step size for svrg, saga
if data == 'covtype' and method in ['svrg', 'saga']:
# NOTE: exp_decay = 1, b = 1 or exp_decay = 0, b = 0
exp_decay = 1
b_range = [1]
if method == 'saga':
g_range = np.arange(10, 80, 1) * .0001
elif method == 'svrg':
g_range = np.arange(15, 120) * .0001
return g_range, b_range
def test(method='sgd', data='covtype', exp_decay=1, subset_size=1., greedy=1, shuffle=0, g_cnt=-1.,
b_cnt=-1., num_runs=10, metric='', reg=1e-5, rand='', num_epochs=-1, from_all=0):
if num_epochs == -1:
num_epochs = 20 + int(np.ceil((1. / subset_size) * 5)) + 5 if subset_size < 1 else 20
else:
rand += f'_e{num_epochs}'
train_data, train_target, val_data, val_target, test_data, test_target = load_dataset(data)
num_class = 1 if data in ['covtype', 'ijcnn1'] else 3
if g_cnt != -1 and b_cnt != -1:
g_range = [g_cnt]
b_range = [b_cnt]
print(f'Running with b: {b_cnt}, g: {g_cnt}')
else:
g_range, b_range = get_param_range(subset_size, exp_decay, method, data)
folder = f'/tmp/{data}'
x_runs_f = [[]] * num_runs
f_runs_f = np.zeros((num_runs, num_epochs))
ft_runs_f = np.zeros((num_runs, num_epochs))
acc_runs_f = np.zeros((num_runs, num_epochs))
t_runs_f = np.zeros((num_runs, num_epochs))
x_runs_a = [[]] * num_runs
f_runs_a = np.zeros((num_runs, num_epochs))
ft_runs_a = np.zeros((num_runs, num_epochs))
acc_runs_a = np.zeros((num_runs, num_epochs))
t_runs_a = np.zeros((num_runs, num_epochs))
for itr in range(num_runs):
f_best, acc_best, b_f, g_f, b_a, g_a = 1e10, 0, 0, 0, 0, 0
if greedy == 1:
file_name = ''
if from_all == 0 and path.exists(f'{folder}_{subset_size}_{metric}.npz'):
file_name = glob.glob(f'{folder}_{subset_size}_{metric}.npz')[0]
elif from_all > 0 and path.exists(f'{folder}_all_{subset_size}_{metric}.npz'):
file_name = glob.glob(f'{folder}_{subset_size}_{metric}.npz')[0]
if file_name != '':
print(f'reading from {file_name}')
dataset = np.load(f'{file_name}')
order, weights, total_ordering_time = dataset['order'], dataset['weight'], dataset['order_time']
else:
print(f'Calculating the ordering and weights for metric {metric}')
train_y = np.argmax(train_target, axis=1) if data == 'combined' else np.reshape(train_target, -1)
if from_all > 0:
train_y = np.zeros(np.shape(train_y), dtype=int)
folder += '_all'
order, weights, _, _, ordering_time, similarity_time = util.get_orders_and_weights(
int(subset_size * len(train_data)), train_data, 'euclidean', 0, 0, False, train_y)
""" use the following to calculate the ordering for various subset sizes """
# util.save_all_orders_and_weights(folder, train_data, metric=metric,
# stoch_greedy=False, y=train_y, equal_num=False)
# return
else:
print('Selecting a random subset')
order = np.arange(0, len(train_data))
random.shuffle(order)
order = order[:int(subset_size * len(train_data))]
weights = np.ones(len(train_data), dtype=np.float)
print(f'--------------- run number: {itr}, rand: {rand}, '
f'subset: {subset_size}, subset size: {len(order)}, num_epochs: {num_epochs} -----------------')
for gamma in g_range:
for b in b_range:
dim = len(train_data[0])
model = LogisticRegression(dim, num_class)
lr = gamma * np.power(b, np.arange(num_epochs)) if exp_decay else gamma / (1 + b * np.arange(num_epochs))
x_s, t_s = Optimizer().optimize(
method, model, train_data[order, :], train_target[order], weights, num_epochs, shuffle, lr, reg)
f_s = model.loss(train_data, train_target, l2_reg=reg)
acc_s = model.accuracy(val_data, val_target)
print(f'data: {data}, method: {method}, run: {itr}, exp_decay: {exp_decay}, size: {subset_size} {rand} '
f'--> f: {f_s}, acc: {acc_s}, b: {b}, g: {gamma}')
if f_s < f_best:
f_best, x_f, g_f, b_f, t_f = f_s, x_s, gamma, b, t_s
x_runs_f[itr] = x_f
t_runs_f[itr, :] = t_f
f_runs_f[itr, :] = [model.loss(train_data, train_target, reg, x_f[j]) for j in range(num_epochs)]
ft_runs_f[itr, :] = [model.loss(test_data, test_target, reg, x_f[j]) for j in range(num_epochs)]
acc_runs_f[itr, :] = [model.accuracy(test_data, test_target, x_f[j]) for j in range(num_epochs)]
print(f'Saving the results to {folder}_{method}_{subset_size}_{rand}_best_f_{metric}_w')
np.savez(f'{folder}_{method}_{subset_size}_{rand}_best_f_{metric}_w', g=g_f, b=b_f,
X_all=x_runs_f, F_all=f_runs_f, T_all=t_runs_f, Acc_all=acc_runs_f, FT_all=ft_runs_f)
if acc_s > acc_best:
acc_best, x_a, g_a, b_a, t_a = acc_s, x_s, gamma, b, t_s
x_runs_a[itr] = x_a
t_runs_a[itr, :] = t_a
f_runs_a[itr, :] = [model.loss(train_data, train_target, reg, x_a[j]) for j in range(num_epochs)]
ft_runs_a[itr, :] = [model.loss(test_data, test_target, reg, x_a[j]) for j in range(num_epochs)]
acc_runs_a[itr, :] = [model.accuracy(test_data, test_target, x_a[j]) for j in range(num_epochs)]
print(f'Saving the results to {folder}_{method}_{subset_size}_{rand}_best_acc_{metric}_w')
np.savez(f'{folder}_{method}_{subset_size}_{rand}_best_acc_{metric}_w', g=g_a, b=b_a,
X_all=x_runs_a, F_all=f_runs_a, T_all=t_runs_a, Acc_all=acc_runs_a, FT_all=ft_runs_a)
print(f'Best solution is => f: {f_best}, a: {acc_best}, b_f: {b_f}, g_f: {g_f}, b_a: {b_a}, g_a: {g_a}')
print(f'Saving the final results to {folder}_{method}_{subset_size}_{rand}_best_f_{metric}_w')
np.savez(f'{folder}_{method}_{subset_size}_{rand}_best_f_{metric}_w', g=g_f, b=b_f,
X_all=x_runs_f, F_all=f_runs_f, T_all=t_runs_f, Acc_all=acc_runs_f, FT_all=ft_runs_f)
print(f'Saving the final results to {folder}_{method}_{subset_size}_{rand}_best_acc_{metric}_w')
np.savez(f'{folder}_{method}_{subset_size}_{rand}_best_acc_{metric}_w', g=g_a, b=b_a,
X_all=x_runs_a, F_all=f_runs_a, T_all=t_runs_a, Acc_all=acc_runs_a, FT_all=ft_runs_a)
print('Finish')
def gradient_difference(data, method, rand, metric, reg=1e-5):
folder = f'/tmp/{data}'
train_data, train_target, val_data, val_target, test_data, test_target = load_dataset(data)
num_runs = 1 if 'grd' in rand else 5
subsets = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
max_diffs = np.zeros((num_runs, len(subsets)))
max_full_grad_norms = np.zeros((num_runs, len(subsets)))
for run in range(num_runs):
for s in range(len(subsets)):
subset_size = subsets[s]
print(f'run {run}, gradient difference for subset: {subset_size}')
if 'grd' in rand:
file_name = glob.glob(f'{folder}_{subset_size}_{metric}.npz')[0]
try:
dataset = np.load(f'{file_name}')
order, weights, total_ordering_time = dataset['order'], dataset['weight'], dataset['order_time']
except:
print(f'could not read {file_name}')
continue
else:
print('Selecting a random subset')
order = np.arange(0, len(train_data))
random.shuffle(order)
order = order[:int(subset_size * len(train_data))]
weights = np.ones(len(order), dtype=np.float) * 1./subset_size
try:
res = np.load(f'{folder}_{method}_{subset_size}_{rand}_best_f_{metric}_w.npz', allow_pickle=True)
non_empty = np.sum(res['F_all'], axis=1) > 0
F, X = res['F_all'], res['X_all']
except:
print(f'could not read {folder}_{method}_{subset_size}_{rand}_best_f_{metric}_w.npz')
continue
best_run = np.argmin(F[non_empty, - 1])
weights_all = np.ones(len(train_data))
weights_all[order] = weights
dim = len(train_data[0])
num_class = 1 if data in ['covtype', 'ijcnn1'] else 3
model = LogisticRegression(dim, num_class)
max_diff, max_norm = 0, 0
num_epochs = min(len(F[best_run]), 20)
W = np.zeros((dim, num_class)) # initialize W 0
b = np.zeros(num_class) # initialize bias 0
full_grad = [W, b]
sub_grad = full_grad.copy()
for epoch in range(num_epochs):
model.params = X[best_run][epoch]
#### random sample
# W_sample = (np.random.rand(dim, num_class)*200-100) * np.ones((dim, num_class))
# b_sample = (np.random.rand(num_class) * 200 - 100)
# model.params = [W_sample, b_sample]
#### random sample
for i in range(len(train_data)):
grad = model.gradient(train_data[i], train_target[i], l2_reg=reg)
full_grad += grad
if i in order:
sub_grad += grad * weights_all[i]
f_grad = np.append(np.reshape(full_grad[0], -1), full_grad[1])
s_grad = np.append(np.reshape(sub_grad[0], -1), sub_grad[1])
max_diff = max(max_diff, np.linalg.norm(f_grad - s_grad))
max_norm = max(max_norm, np.linalg.norm(f_grad))
max_diffs[run, s] = (max_diff / len(train_data))
max_full_grad_norms[run, s] = (max_norm / len(train_data))
print(*max_diffs, sep=', ')
print(*max_full_grad_norms, sep=', ')
tmp = 'rand_wgt' if 'rand_nw' in rand else rand
print(f'Saving to {folder}_{method}_{tmp}_{metric}_grad_diff_w')
np.savez(f'{folder}_{method}_{tmp}_{metric}_grad_diff_w', diff=max_diffs,
max_full_grad_norms=max_full_grad_norms)
return max_diffs
if __name__ == '__main__':
p = argparse.ArgumentParser(description='Faster Training.')
p.add_argument('--data', type=str, required=False, default='covtype',
choices=['cifar10', 'covtype', 'mnist', 'ijcnn1', 'combined'], help='name of dataset')
p.add_argument('--exp_decay', type=int, required=False, default=1,
choices=[0, 1], help='exponentially decaying learning rate')
p.add_argument('--greedy', type=int, required=False, default=1,
help='greedy ordering')
p.add_argument('--reg', type=float, required=False, default=1e-5,
help='L2 regularization constant')
p.add_argument('--method', type=str, required=False, default='sgd',
choices=['sgd', 'svrg', 'saga'], help='sgd, svrg, saga')
p.add_argument('--subset_size', '-s', type=float, required=False,
help='size of the subset')
p.add_argument('--shuffle', type=int, default=2,
choices=[0, 1, 2, 3],
help='0: not shuffling, 1: random permutation, 2: with replacement, 3: fixed permutation')
p.add_argument('--num_runs', type=int, required=False, default=10,
help='number of runs')
p.add_argument('--metric', type=str, required=False, default='l2',
help='distance metric')
p.add_argument('--b', type=float, required=False, default=-1,
help='learning rate parameter b')
p.add_argument('--g', type=float, required=False, default=-1,
help='learning rate parameter g')
p.add_argument('--num_epochs', type=int, required=False, default=-1,
help='number of epochs')
p.add_argument('--grad_diff', type=int, required=False, default=0,
help='number of epochs')
p.add_argument('--from_all', type=int, required=False, default=0,
help='number of epochs')
args = p.parse_args()
if args.greedy == 0:
rand = 'rand_nw'
elif args.greedy == 1 and args.shuffle == 1:
rand = 'grd_shuff'
elif args.greedy == 1 and args.shuffle == 2:
rand = 'grd_rand'
elif args.greedy == 1 and args.shuffle == 0:
rand = 'grd_ord'
elif args.greedy == 1 and args.shuffle > 2:
rand = 'grd_fix_perm'
else:
rand = ''
if args.grad_diff:
gradient_difference(data=args.data, method=args.method, rand=rand, metric=args.metric)
else:
test(method=args.method, data=args.data, exp_decay=args.exp_decay, subset_size=args.subset_size,
greedy=args.greedy, shuffle=args.shuffle, b_cnt=args.b, g_cnt=args.g, num_runs=args.num_runs,
metric=args.metric, rand=rand, num_epochs=args.num_epochs, from_all=args.from_all)