-
Notifications
You must be signed in to change notification settings - Fork 1
/
twitch.neo4j-browser-guide
572 lines (515 loc) · 21.9 KB
/
twitch.neo4j-browser-guide
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
<style type="text/css" media="screen">
/*
.nodes-image {
margin:-100;
}
*/
@import url("//maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-awesome.min.css");
.imageblock .content img, .image img {max-width: 900px;max-height: 300px;}
.deck h3, .deck h4 {display: block !important;margin-bottom:8px;margin-top:5px;}
.listingblock {margin:8px;}
.pull-bottom {position:relative;bottom:1em;}
.admonitionblock td.icon [class^="fa icon-"]{font-size:2.5em;text-shadow:1px 1px 2px rgba(0,0,0,.5);cursor:default}
.admonitionblock td.icon .icon-note:before{content:"\f05a";color:#19407c}
.admonitionblock td.icon .icon-tip:before{content:"\f0eb";text-shadow:1px 1px 2px rgba(155,155,0,.8);color:#111}
.admonitionblock td.icon .icon-warning:before{content:"\f071";color:#bf6900}
.admonitionblock td.icon .icon-caution:before{content:"\f06d";color:#bf3400}
.admonitionblock td.icon .icon-important:before{content:"\f06a";color:#bf0000}
.admonitionblock.note.speaker { display:none; }
</style>
<style type="text/css" media="screen">
/* #editor.maximize-editor .CodeMirror-code { font-size:24px; line-height:26px; } */
</style>
<article class="guide" ng-controller="AdLibDataController">
<carousel class="deck container-fluid">
<!--slide class="row-fluid">
<div class="col-sm-3">
<h3>Twitch</h3>
<p class="lead">Information</p>
<!dl>
</dl>
</div>
<div class="col-sm-9">
<figure>
<img style="width:300px" src=""/>
</figure>
</div>
</slide-->
<h4>Twitch</h4>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Twitch network analysis</h3>
<br/>
<div>
<div class="paragraph">
<p>Twitch is an online platform that allows users to share their content via live stream.
Twitch streamers broadcast their gameplay or activity by sharing their screen with fans who can hear and watch them live.</p>
</div>
<div class="paragraph">
<p>This guide will show you how to:</p>
</div>
<div class="ulist">
<ul>
<li>
<p>Perform exploratory graph analysis</p>
</li>
<li>
<p>Analyze the network of users</p>
</li>
<li>
<p>Find communities of streamers with shared audience</p>
</li>
</ul>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Graph model</h3>
<br/>
<div>
<div class="imageblock" style="float: right;">
<div class="content">
<img src="https://guides.neo4j.com/sandbox/twitch/img/graph-model.png" alt="graph model">
</div>
</div>
<div class="paragraph">
<p>The Twitch social network composes of users.
A small percent of those users broadcast their gameplay or activities through live streams.
In the graph model, users who do live streams are tagged with a secondary label Stream.
Additional information about which teams they belong to, which games they play on stream, and in which language they present their content is present.
You also know how many followers they had at the moment of scraping, the all-time historical view count, and when they created their user account.
The most relevant information for network analysis is knowing which users engaged in the streamer’s chat.
You can distinguish if the user who chatted in the stream was a regular user (CHATTER relationship), a moderator of the stream (MODERATOR relationship), or a VIP of the stream.</p>
</div>
<div class="paragraph">
<p><em>The network information was scraped between the 7th and the 10th of May 2021.</em></p>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Graph statistics</h3>
<br/>
<div>
<div class="paragraph">
<p>To learn how many nodes and of which labels there are in the network, you can use the <em>apoc.meta.stats</em> procedure.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL apoc.meta.stats()
YIELD labels<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>You can observe that almost all of the nodes in our graph are users.
There are 10.5 million users and only around 6000 of them are streamers.
These streamers have played 594 games and broadcasted in 29 different languages.</p>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Exploring streamer’s view and follower count</h3>
<br/>
<div>
<div class="paragraph">
<p>The total view count and the number of followers for each streamer are stored as node properties.
You can find the most viewed and most followed streamers using the <code>ORDER BY</code> and <code>LIMIT</code> clauses.</p>
</div>
<div class="paragraph">
<p>Find streamers with the most all-time view count.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (u:Stream)
WHERE u.total_view_count IS NOT NULL
RETURN u.name as streamer,
u.total_view_count as total_view_count
ORDER BY total_view_count DESC
LIMIT 10;<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>Find streamers with the highest count of followers.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (u:Stream)
WHERE u.followers IS NOT NULL
RETURN u.name as streamer,
u.followers as followers
ORDER BY followers DESC
LIMIT 10;<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p><em>Only streamers that have been active on the weekend between 7th and the 10th of May 2021 are included.</em></p>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Cypher implicit aggregations</h3>
<br/>
<div>
<div class="paragraph">
<p>When using aggregation operators in Cypher, you must remember that Cypher uses implicit aggregation.
All the non-aggregated variables that are in the <code>RETURN</code> or the <code>WITH</code> clause, will be used as grouping keys.
In this example, you will count the number of streamers per their account creation year.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (u:Stream)
WHERE u.createdAt IS NOT NULL
RETURN u.createdAt.year as year,
count(*) as countOfNewStreamers
ORDER BY year;<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Counting the number of relationships per node</h3>
<br/>
<div>
<div class="paragraph">
<p>Neo4j maintains a transactional count store for holding relationship degree for each node.
To access that data in constant time, you can use the <code>count {}</code> clause.
Here, you will inspect the games that have the highest count of streamers playing them.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (g:Game)
RETURN g.name as game,
count{ (g)<-[:PLAYS]-() } as number_of_streamers
ORDER BY number_of_streamers DESC
LIMIT 10<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>Find users with the highest count of VIP relationships.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (u:User)
RETURN u.name as user,
count{ (u)-[:VIP]->() } as number_of_vips
ORDER BY number_of_vips DESC LIMIT 10;<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>Find users with the highest count of MODERATOR relationships.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (u:User)
RETURN u.name as user,
count{ (u)-[:MODERATOR]->() } as number_of_mods
ORDER BY number_of_mods DESC LIMIT 10;<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Cypher subqueries</h3>
<br/>
<div>
<div class="paragraph">
<p><code>CALL</code> clause allows to execute subqueries, i.e. queries inside of other queries.
Subqueries allow you to compose queries, which is especially useful when working with aggregations or limiting results.
In this example, you will first match a single streamer.
Next, you will use a subquery to match five streamers and separately five users that chatted in the original streamer’s broadcast.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (s:Stream)
WITH s LIMIT 1
CALL {
WITH s
MATCH p=(s)<--(:Stream)
RETURN p
LIMIT 5
UNION
WITH s
MATCH p=(s)<--(:User)
RETURN p
LIMIT 5
}
RETURN p<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>You can observe that streamers behave like regular users.
They can chat in other streamer’s broadcasts, be their moderator or VIP.</p>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Node degree distribution</h3>
<br/>
<div>
<div class="paragraph">
<p>Node degree is simply the count of relationships each node has.
Here, we are dealing with a directed network as the relationship direction holds semantic value.
When dealing with directed networks, you can split the node degree distribution into in-degree, where you count incoming relationships, and out-degree, where you are counting outgoing connections.
First, you will examine the out-degree distribution of the user chatter network.
Using the <code>apoc.agg.statistics</code> procedure you can evaluate the distribution by looking at various percentile values of the values.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (u:User)
WITH u, count{ (u)-[:CHATTER|VIP|MODERATOR]->() } as node_outdegree
RETURN apoc.agg.statistics(node_outdegree) as statistics<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>Next, you will inspect the in-degree distribution of the user chatter network.
Remember, only streamers have incoming relationships, so we can skip inspecting regular users as we already know their in-degree is zero.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (u:Stream)
WITH u, count{ (u)<-[:CHATTER|VIP|MODERATOR]-() } as node_indegree
RETURN apoc.agg.statistics(node_indegree) as statistics<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Graph Data Science library</h3>
<br/>
<div>
<div class="paragraph">
<p>The Neo4j Graph Data Science library (GDS) features more than 50 graph algorithms, ranging from centrality to community detection and node embedding algorithms.
The GDS library executes graph algorithms on a specialized in-memory graph format to improve the performance and scale of graph algorithms.
Using native or cypher projections, we can project the stored graph in our database to the in-memory graph format.
You will begin by projecting all <code>User</code> and <code>Stream</code> nodes and the possible relationships between them, which are <code>CHATTER</code>, <code>MODERATOR</code>, and <code>VIP</code>.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.graph.project('twitch',
['User', 'Stream'],
['CHATTER', 'VIP', 'MODERATOR'])<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Weakly Connected Components</h3>
<br/>
<div>
<div class="paragraph">
<p>The Weakly connected components algorithm (WCC) is used to find disparate islands or components of nodes within a given network.
A node can reach all the other nodes in the same component when you disregard the relationship direction.</p>
</div>
<div class="paragraph">
<p>Use the following Cypher query to execute a Weakly-Connected Components algorithm on the Twitch user network.
The <em>stats</em> method of the algorithm is used when we are interested in only high-level statistics of algorithm results.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.wcc.stats('twitch')
YIELD componentCount, componentDistribution<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>With the in-memory graph projection, you can also filter nodes or relationships at algorithm execution time.
In the next example, the WCC algorithm will consider only Stream nodes and connections between them.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.wcc.stats('twitch', {nodeLabels:['Stream']})
YIELD componentCount, componentDistribution<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>PageRank</h3>
<br/>
<div>
<div class="paragraph">
<p>PageRank is probably one of the most famous graph algorithms.
It is used to calculate node importance by considering the inbound relationships of a node as well as the importance of the nodes linking to it. PageRank was initially used to calculate the importance of websites by Google, but it can be used in many different scenarios.
Use the following Cypher query to execute the PageRank algorithm on the whole user network.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.pageRank.stream('twitch')
YIELD nodeId, score
WITH nodeId, score
ORDER BY score
DESC LIMIT 10
RETURN gds.util.asNode(nodeId).name as user, score<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>Similarly as with the WCC algorithm, you can choose to run PageRank on the streamer subgraph.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.pageRank.stream('twitch', {nodeLabels:['Stream']})
YIELD nodeId, score
WITH nodeId, score
ORDER BY score
DESC LIMIT 10
WITH gds.util.asNode(nodeId) as node,score
RETURN node.name as streamer,
score,
count{ (node)<--(:Stream) } as relationships_from_streamers,
count{ (node)<--(:User) } as relationships_from_users<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Community detection</h3>
<br/>
<div>
<div class="paragraph">
<p>Community detection or clustering algorithms are used to infer the community structure of a given network.
Communities are vaguely defined as groups of nodes within a network that are more densely connected to one another than to other nodes.
With the following Cypher query, you can find the ten largest communities.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.louvain.stream('twitch', {nodeLabels:['Stream']})
YIELD nodeId, communityId
RETURN communityId, count(*) as communitySize
ORDER BY communitySize DESC LIMIT 10<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Shared audience analysis</h3>
<br/>
<div>
<div class="paragraph">
<p>First, drop the current in-memory projected graph.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.graph.drop("twitch")<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>You will examine the shared audience between streamers who play Chess or Poker on stream.
You can pick any other games if you so wish.
To simplify queries, you will first tag the mentioned streamers with a secondary label.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->MATCH (s:Stream)-[:PLAYS]->(g:Game)
WHERE g.name in ["Chess", "Poker"]
SET s:PokerChess<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>Next, you will use <code>apoc.periodic.iterate</code> procedure to batch update users who have an out-degree higher than 1.
With this step, you will filter regular users who have chatted in more than a single stream.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL apoc.periodic.iterate("
MATCH (u:User)
WHERE NOT u:Stream AND COUNT {(u)-->(:Stream)} > 1
RETURN u",
"SET u:Audience",
{batchSize:50000, parallel:true}
)<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Node Similarity algorithm</h3>
<br/>
<div>
<div class="paragraph">
<p>You need to infer a new network that depicts which streamers share their audience before we can run the Node Similarity algorithm.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.graph.project('shared-audience',
['PokerChess', 'Audience'],
{CHATTERS: {type:'*', orientation:'REVERSE'}})<!--/code--></pre>
</div>
</div>
<div class="paragraph">
<p>The Node Similarity algorithm uses the Jaccard similarity coefficient to compare how similar a pair of nodes are.
We will assume that if two streamers share at least 5% of the audience, we will create a relationship between them.
The <em>mutate</em> mode of the algorithms stores the results back to the in-memory projected graph.
This way, you can use the results of one algorithm as an input to another graph algorithm.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.nodeSimilarity.mutate('shared-audience',
{similarityMetric: 'Jaccard',similarityCutoff:0.05, topK:15, sudo:true,
mutateProperty:'score', mutateRelationshipType:'SHARED_AUDIENCE'})<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Community detection of shared audience network</h3>
<br/>
<div>
<div class="paragraph">
<p>With the inferred shared audience network, you can go ahead and run the community detection Louvain algorithm on it.</p>
</div>
<div class="listingblock">
<div class="content">
<pre mode="cypher" class="highlight pre-scrollable programlisting cm-s-neo code runnable standalone-example ng-binding" data-lang="cypher" lang="cypher"><!--code class="cypher language-cypher"-->CALL gds.louvain.stream('shared-audience',
{ nodeLabels:['PokerChess'],
relationshipTypes:['SHARED_AUDIENCE'],
relationshipWeightProperty:'score'})
YIELD nodeId, communityId
RETURN communityId, count(*) as communitySize, collect(gds.util.asNode(nodeId).name) as members
ORDER BY communitySize DESC
LIMIT 5<!--/code--></pre>
</div>
</div>
</div>
</div>
</slide>
<slide class="row-fluid">
<div class="col-sm-12">
<h3>Next steps</h3>
<br/>
<div>
<div class="paragraph">
<p>You can try to perform the shared audience analysis on streamers who play other games.
If you want to, you can dig deeper into the moderator or the VIP network by considering only those relatioships.
You can also test out other centrality or community detection algorithms and see how their score compares to PageRank.</p>
</div>
</div>
</div>
</slide>
</carousel>
</article>