Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

258 各位相加 #122

Open
neptoo opened this issue Mar 21, 2021 · 0 comments
Open

258 各位相加 #122

neptoo opened this issue Mar 21, 2021 · 0 comments
Labels

Comments

@neptoo
Copy link
Owner

neptoo commented Mar 21, 2021

各位相加

给定一个非负整数 num,反复将各个位上的数字相加,直到结果为一位数。

输入: 38
输出: 2
解释: 各位相加的过程为:3 + 8 = 11, 1 + 1 = 2。 由于 2 是一位数,所以返回 2。
let addMore = (num) => {
  // 递归的边界条件||递归的出口
  if (num < 10) {
    return num;
  }
  let res = num.toString().split('').reduce((pre, cur) => {
    // parseInt() !!!!
    return pre + parseInt(cur);
  }, 0);
  return addMore(res);
};
// console.log(addMore(38));

tip1: 直到 --> 递归

递归:函数在调用过程中调用自己

fibonacci 数列:该数列从第三项开始,后面的每一项数字都是前面两项数字的和。

F(0)=1, F(1)=1,F(n)=F(n-1)+F(n-2) (n>1) 1,1,2,3,5,8,...

// 最基础的解法
// function fib(n) {
//   if (n == 1 || n == 2) {
//     return 1;
//   } else {
//     return fib(n - 1) + fib(n - 2);
//   }
// }
// 缓存解法 arr=[1,2,3,5]
// 数组方法
// let fibo = (function(){
//   let cache = [];
//   return function(n){
//       if (cache[n] !== undefined){
//           return cache[n];
//       }else{
//           return cache[n] = (n <= 2) ? 1 : fibo(n - 1) + fibo(n - 2);
//       }
//   }
// })();
// let fib = (function () {
//   let memo = new Map();
//   return function (n) {
//     let memorized = memo.get(n);
//     if (memorized) {
//       return memorized;
//     }
//     if (n == 1 || n == 2) {
//       return 1;
//     }
//     let f1 = fib(n - 1);
//     let f2 = fib(n - 2);
//     memo.set(n-1, f1);
//     memo.set(n-2, f2);
//     return f1 + f2;
//   };
// })();
// 动态规划的解法
// let fib = function (n) {
//   let dp = [];
//   dp[0] = 0;
//   dp[1] = 1;
//   // 从2开始 不断用之前的值 填充数组
//   for (let i = 2; i <= n; i++) {
//     dp[i] = dp[i - 1] + dp[i - 2];
//   }
//   return dp[n];
// };
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant