- AlexNet
- Used ReLU activation
- Local Response Normalization
- Overlapping Pooling
- Data Augmentation
- Dropout
- VGGNet: Used only 3x3 convolutions
- GoogLeNet: Used wise 1x1 convolutions
- ResNet: Residual Network
- DenseNet: Concatenation Network
- Fully Convolutional Network
- UNet: Auto-encoder Network
- DeepLab
- R-CNN
- Selective Search
- Bounding Box Regression
- SVM
- SPPNet: Spatial Pyramid Pooling
- Fast R-CNN: ROI Pooling
- Faster R-CNN: Region Proposal Network
- YOLO
- Without explicit bounding box sampling
- Simultaneous prediction of bounding boxes and class probabilities
- Implicit Models: Generation only
- Explicit Models: Estimate density
- Generation
- Density Estimation
- Unsupervised Representation Learning
- Leveraging conditional independency
- Neural Autoregressive Density Estimator: Consider every prior pixel
- Pixel RNN: Consider some prior pixels
- Ordering data patches
- Pixel RNN with Row LSTM: Consider every top-left prior pixel
- Pixel RNN with Diagonal BiLSTM: Consider diagonal prior pixels
- [강의] Deep Learning Basics
- Modern CNN
- Computer Vision Applications
- [퀴즈] Deep Learning Basics
- CNN
- [강의] Deep Learning Basics
- Generative Models I
- [과제] Deep Learning Basics
- ViT
- Transformer 관련 이야기
- 대학원 연구실 관련 이야기