This repository has been archived by the owner on Jun 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
262 lines (205 loc) · 8.57 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#
# boostcamp AI Tech
# Educational Mask Image Dataset
#
import os
import random
from enum import Enum
from typing import Tuple, List, Dict
import numpy as np
import pandas as pd
from PIL import Image
from torch.utils.data import Dataset, Subset
import torchvision.transforms as transforms
class MaskLabels(int, Enum):
MASK = 0
INCORRECT = 1
NORMAL = 2
@classmethod
def from_str(cls, value: str) -> int:
if value == 'mask1' or value == 'mask2' or value == 'mask3' or value == 'mask4' or value == 'mask5':
return cls.MASK
elif value == 'incorrect_mask':
return cls.INCORRECT
elif value == 'normal':
return cls.NORMAL
else:
raise ValueError(f"Mask value is {value}, which is errorneous")
class GenderLabels(int, Enum):
MALE = 0
FEMALE = 1
@classmethod
def from_str(cls, value: str) -> int:
if value == 'male':
return cls.MALE
elif value == 'female':
return cls.FEMALE
else:
raise ValueError(f"Gender value should be either 'male' or 'female', but is {value}")
class AgeLabels(int, Enum):
YOUNG = 0
MIDDLE = 1
OLD = 2
@classmethod
def from_number(cls, value: str) -> int:
try:
value = int(value)
except Exception:
raise ValueError(f"Age value should be numeric, but is {value}")
if value < 30:
return cls.YOUNG
elif value < 60:
return cls.MIDDLE
else:
return cls.OLD
class ProfileClassEqualSplitTrainMaskDataset(Dataset):
def __init__(self, data_dir: str = '/',
mean=(0.548, 0.504, 0.479), std=(0.237, 0.247, 0.246),
transform = None, val_ratio: float = 0.2, classes: int = 18) -> None:
super().__init__()
self.image_paths = []
self.image_labels = []
self.mean = mean
self.std = std
self.transform = transform
self.indices = {
'train': [],
'val': []
}
self.setup(os.path.join(data_dir, 'train/images'), val_ratio, classes)
self.calc_statistics()
@staticmethod
def split_profile(profiles_len: int, val_ratio: float) -> Dict:
assert profiles_len % 5 == 0, ValueError(f"Each profile should have five mask wearing images")
profiles_len = profiles_len // 5
val_len = int(profiles_len * val_ratio)
val_indices = set(random.sample(range(profiles_len), k=val_len))
train_indices = set(range(profiles_len)) - val_indices
return {
'train': train_indices,
'val': val_indices
}
def setup(self, root: str, val_ratio: float, classes: int) -> None:
for _ in range(classes):
self.image_paths.append([])
profiles = os.listdir(root)
for profile in profiles:
if profile.startswith('.'):
continue
_, gender, _, age = profile.split('_')
gender_label = GenderLabels.from_str(gender)
age_label = AgeLabels.from_number(age)
img_folder = os.path.join(root, profile)
for file_name_ext in os.listdir(img_folder):
file_name, _ = os.path.splitext(file_name_ext)
if file_name not in ['incorrect_mask', 'mask1', 'mask2', 'mask3', 'mask4', 'mask5', 'normal']:
continue
mask_label = MaskLabels.from_str(file_name)
label = self.encode_multi_class(mask_label, gender_label, age_label)
img_path = os.path.join(root, profile, file_name_ext)
self.image_paths[label].append(img_path)
# Number of image paths of images with class label [None, 0, 0 ~ 1, 0 ~ 2, ..., 0 ~ 16]
label_len_sum = [0]
for label in range(1, classes):
label_len_sum.append(label_len_sum[label - 1] + len(self.image_paths[label - 1]))
for label in range(classes // 3):
split_profiles = self.split_profile(len(self.image_paths[label]), val_ratio)
for phase, profile_indices in split_profiles.items():
for profile_index in profile_indices:
for i in range(5):
self.indices[phase].append(label_len_sum[label] + profile_index * 5 + i) # Label 0 ~ 5
self.indices[phase].append(label_len_sum[label + 6] + profile_index) # Label 6 ~ 11
self.indices[phase].append(label_len_sum[label + 12] + profile_index) # Label 12 ~ 17
for label in range(classes):
self.image_labels.extend([label] * len(self.image_paths[label]))
self.image_paths = [path for path_label in self.image_paths for path in path_label] # Flatten
# For baseline compatibility
def calc_statistics(self):
has_statistics = self.mean is not None and self.std is not None
if not has_statistics:
print("[Warning] Calculating statistics... It can take a long time depending on your CPU machine")
sums = []
squared = []
for image_path in self.image_paths[:3000]:
image = np.array(Image.open(image_path)).astype(np.int32)
sums.append(image.mean(axis=(0, 1)))
squared.append((image ** 2).mean(axis=(0, 1)))
self.mean = np.mean(sums, axis=0) / 255
self.std = (np.mean(squared, axis=0) - self.mean ** 2) ** 0.5 / 255
# For baseline compatibility
def set_transform(self, transform) -> None:
self.transform = transform
def __getitem__(self, index: int) -> Tuple[torch.Tensor, int]:
image = self.read_image(index)
label = self.get_label(index)
if self.transform:
return self.transform(image), label
else:
return transforms.ToTensor(image), label
def __len__(self) -> int:
return len(self.image_paths)
def get_label(self, index: int) -> int:
return self.image_labels[index]
def read_image(self, index: int) -> Image.Image:
return Image.open(self.image_paths[index])
@staticmethod
def encode_multi_class(mask_label: int, gender_label: int, age_label: int) -> int:
return mask_label * 6 + gender_label * 3 + age_label
# For baseline compatibility
@staticmethod
def decode_multi_class(multi_class_label) -> Tuple[MaskLabels, GenderLabels, AgeLabels]:
mask_label = (multi_class_label // 6) % 3
gender_label = (multi_class_label // 3) % 2
age_label = multi_class_label % 3
return mask_label, gender_label, age_label
# For baseline compatibility
@staticmethod
def denormalize_image(image, mean, std):
img_cp = image.copy()
img_cp *= std
img_cp += mean
img_cp *= 255.0
img_cp = np.clip(img_cp, 0, 255).astype(np.uint8)
return img_cp
def split_dataset(self) -> List[Subset]:
return [Subset(self, indices) for _, indices in self.indices.items()]
class EvalMaskDataset(Dataset):
def __init__(self, data_dir: str = '/', transform = None) -> None:
super().__init__()
img_list = pd.read_csv(os.path.join(data_dir, 'eval/info.csv'))
self.image_paths = [os.path.join(data_dir, 'eval/images', img_id) for img_id in img_list.ImageID]
self.transform = transform
# For baseline compatibility
def set_transform(self, transform) -> None:
self.transform = transform
def __getitem__(self, index: int) -> torch.Tensor:
image = self.read_image(index)
if self.transform:
return self.transform(image)
else:
return transforms.ToTensor(image)
def __len__(self) -> int:
return len(self.image_paths)
def read_image(self, index: int) -> Image.Image:
return Image.open(self.image_paths[index])
class TestDataset(Dataset):
'''
For baseline compatibility
'''
def __init__(self, img_paths, resize, mean=(0.548, 0.504, 0.479), std=(0.237, 0.247, 0.246)) -> None:
self.img_paths = img_paths
self.transform = transforms.Compose([
transforms.Resize(resize, Image.BILINEAR),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
def __getitem__(self, index: int) -> torch.Tensor:
image = self.read_image(index)
if self.transform:
return self.transform(image)
else:
return transforms.ToTensor(image)
def __len__(self) -> int:
return len(self.img_paths)
def read_image(self, index: int) -> Image.Image:
return Image.open(self.img_paths[index])