-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch18monad.hs
193 lines (141 loc) · 4.43 KB
/
ch18monad.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
module Chapter18Monad where
import Control.Applicative
import Control.Monad
import Test.QuickCheck hiding (Success)
import Test.QuickCheck.Checkers
import Test.QuickCheck.Classes
-- Short Exercise: Either Monad (page 784)
data Suma a b = Primero a | Segundo b deriving (Eq, Show)
instance Functor (Suma a) where
fmap _ (Primero a) = Primero a
fmap f (Segundo b) = Segundo (f b)
instance Applicative (Suma a) where
pure = Segundo
(<*>) (Primero a) _ = Primero a
(<*>) _ (Primero a) = Primero a
(<*>) (Segundo f) (Segundo b) = Segundo (f b)
instance Monad (Suma a) where
return = pure
(>>=) (Primero a) _ = Primero a
(>>=) (Segundo b) f = f b
instance (Arbitrary a, Arbitrary b) => Arbitrary (Suma a b) where
arbitrary = oneof [fmap Primero arbitrary, fmap Segundo arbitrary]
instance (Eq a, Eq b) => EqProp (Suma a b) where
(=-=) = eq
sumaMonadLaws :: IO ()
sumaMonadLaws = quickBatch $ monad (undefined :: Suma Int (Int, Int, Int))
-- 18.7 Chapter Exercises (page 795)
-- 1
data Nope a = Nope deriving (Eq, Show)
instance Functor Nope where
fmap _ Nope = Nope
instance Applicative Nope where
pure _ = Nope
(<*>) Nope Nope = Nope
instance Monad Nope where
return = pure
(>>=) Nope _ = Nope
instance Arbitrary (Nope a) where
arbitrary = return Nope
instance EqProp (Nope a) where
(=-=) = eq
nopeMonadLaws :: IO ()
nopeMonadLaws = quickBatch $ monad (undefined :: Nope (Int, Int, Int))
-- 2
data YaSea a b =
Izq a
| Der b
deriving (Eq, Show)
instance Functor (YaSea a) where
fmap _ (Izq a) = Izq a
fmap f (Der b) = Der (f b)
instance Applicative (YaSea a) where
pure = Der
(<*>) (Izq a) _ = Izq a
(<*>) _ (Izq a) = Izq a
(<*>) (Der f) (Der b) = Der (f b)
instance Monad (YaSea a) where
return = pure
(>>=) (Izq a) _ = Izq a
(>>=) (Der b) f = f b
instance (Arbitrary a, Arbitrary b) => Arbitrary (YaSea a b) where
arbitrary = oneof [fmap Izq arbitrary, fmap Der arbitrary]
instance (Eq a, Eq b) => EqProp (YaSea a b) where
(=-=) = eq
yaSeaMonadLaws :: IO ()
yaSeaMonadLaws = quickBatch $ monad (undefined :: YaSea Int (Int, Int, Int))
-- 3
newtype Identity a = Identity a deriving (Eq, Show)
instance Functor Identity where
fmap f (Identity a) = Identity (f a)
instance Applicative Identity where
pure = Identity
(<*>) (Identity f) (Identity a) = Identity (f a)
instance Monad Identity where
return = pure
(>>=) (Identity a) f = f a
instance Arbitrary a => Arbitrary (Identity a) where
arbitrary = fmap Identity arbitrary
instance Eq a => EqProp (Identity a) where
(=-=) = eq
identityMonadLaws :: IO ()
identityMonadLaws = quickBatch $ monad (undefined :: Identity (Int, Int, Int))
-- 4
data List a = Nil | Cons a (List a) deriving (Eq, Show)
fromList :: List a -> [a]
fromList Nil = []
fromList (Cons x xs) = x : fromList xs
toList :: [a] -> List a
toList = foldr Cons Nil
take' :: Int -> List a -> List a
take' _ Nil = Nil
take' 0 _ = Nil
take' n (Cons x xs) = Cons x (take' (n - 1) xs)
instance Monoid (List a) where
mempty = Nil
mappend Nil xs = xs
mappend xs Nil = xs
mappend (Cons x xs) ys = Cons x (xs `mappend` ys)
instance Functor List where
fmap _ Nil = Nil
fmap f (Cons a as) = Cons (f a) (fmap f as)
instance Applicative List where
pure x = Cons x Nil
(<*>) Nil _ = Nil
(<*>) _ Nil = Nil
(<*>) fs (Cons x xs) = fmap ($ x) fs `mappend` (fs <*> xs)
instance Monad List where
return = pure
(>>=) Nil _ = Nil
(>>=) (Cons x xs) f = f x `mappend` (xs >>= f)
instance Arbitrary a => Arbitrary (List a) where
arbitrary = oneof [
return Nil
, do
a <- arbitrary
l <- arbitrary
return $ Cons a l
]
instance Eq a => EqProp (List a) where
(=-=) xs ys = take' 1000 xs `eq` take' 1000 ys
listLaws :: IO ()
listLaws = do
putStrLn "List laws"
quickBatch $ monoid (undefined :: List (Int, Int, Int))
quickBatch $ functor (undefined :: List (Int, Int, Int))
quickBatch $ applicative (undefined :: List (Int, Int, Int))
quickBatch $ monad (undefined :: List (Int, Int, Int))
----
j :: Monad m => m (m a) -> m a
j mma = mma >>= id -- join
l1 :: Monad m => (a -> b) -> m a -> m b
l1 = fmap
l2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c
l2 f ma mb = ma >>= (\a -> fmap (f a) mb)
a :: Monad m => m a -> m (a -> b) -> m b
a ma mf = mf <*> ma
meh :: Monad m => [a] -> (a -> m b) -> m [b]
meh [] _ = return []
meh (x:xs) f = liftM2 (++) (pure <$> f x) (meh xs f)
flipType :: Monad m => [m a] -> m [a]
flipType mas = meh mas id