forked from serre-lab/ees-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_new.py
323 lines (269 loc) · 13.2 KB
/
trainer_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import torch
import torch.nn.functional as F
import numpy as np
import os
import logging
from ignite.engine import Engine, DeterministicEngine, Events
from ignite.handlers import ModelCheckpoint, Checkpoint, global_step_from_engine
from ignite.utils import setup_logger
from ignite.metrics import Loss, RunningAverage
from hydra.utils import instantiate
from utils.handler import output_transform, prepare_batch, switch_batch, fetch_last_checkpoint_model_filename, save_activation
from utils.visualization import tsne
from param_recovery import LocalSimulator, GlobalSimulator, Inference
import json
from collections import OrderedDict
class Trainer():
def __init__(self,
num_epochs,
metrics,
device,
deterministic,
eval_interval,
checkpoint_dir,
num_rounds,
num_simulations,
simulation_batch_size,
training_batch_size,
num_samples,
filtering_ratio,
num_proposals,
timeout):
# assert device in ['cpu', 'cuda']
self.num_epochs = num_epochs
self.eval_interval = eval_interval
self.device = device
self.deterministic = deterministic
self.checkpoint_dir = checkpoint_dir
self.num_rounds = num_rounds
self.num_simulations = num_simulations
self.simulation_batch_size = simulation_batch_size
self.training_batch_size = training_batch_size
self.num_samples = num_samples
self.filtering_ratio = filtering_ratio
self.num_proposals = num_proposals
self.timeout = timeout
self.metrics = {k:instantiate(v, output_transform=output_transform) for (k, v) in metrics.items()}
def train(self, model, datamodule):
model = model.to(self.device)
# datamodule.prepare_data()
# datamodule.setup(self.fold_idx) # 10 fold cv
train_dataloader = datamodule.train_dataloader()
valid_dataloader = datamodule.valid_dataloader()
trainer = Engine(model._update) if not self.deterministic else DeterministicEngine(model._update)
evaluator = Engine(model._inference)
# trainer.logger.disabled = True
# trainer.logger = setup_logger("Trainer")
evaluator.logger = setup_logger("Evaluator")
# # attach running average to trainer
# RunningAverage(output_transform=lambda x: x).attach(trainer, "running_avg_loss")
# @trainer.on(Events.EPOCH_COMPLETED)
# def log_running_avg_metrics(engine):
# print("Epoch[{}] Running avg loss: {:.2f}".format(engine.state.epoch, engine.state.metrics['running_avg_loss']))
# attach metrics to evaluator
for name, metric in self.metrics.items():
metric.attach(evaluator, name)
# attach validation step to trainer
@trainer.on(Events.EPOCH_COMPLETED(every=self.eval_interval))
def log_validation_results(engine):
evaluator.run(valid_dataloader)
metrics = evaluator.state.metrics
log = 'Stage: %s | Epoch: %d' % ('valid', engine.state.epoch)
for name in self.metrics.keys():
log = '%s | %s: %f' % (log, name, metrics[name])
print(log)
# attach checkpointer to evaluator
checkpointer = ModelCheckpoint(
self.checkpoint_dir,
n_saved=None,
filename_prefix="",
score_function=lambda engine: engine.state.metrics["corr"],
score_name="valid_corr",
global_step_transform=global_step_from_engine(trainer),
)
to_save = {
'model': model,
# 'optimizer': self.optimizer,
'trainer': trainer
}
evaluator.add_event_handler(Events.COMPLETED, checkpointer, to_save)
# attach switch_batch for tensor device conversion
trainer.add_event_handler(Events.ITERATION_STARTED, switch_batch, self.device)
evaluator.add_event_handler(Events.ITERATION_STARTED, switch_batch, self.device)
# run trainer
trainer.run(train_dataloader, max_epochs=self.num_epochs)
def eval(self, model, datamodule, stage, checkpointer=None, model_save_path=None, visualization=None):
assert stage in ['train', 'valid', 'test']
model = model.to(self.device)
# datamodule.prepare_data()
# datamodule.setup(self.fold_idx) # 10 fold cv
loader = {
'train': datamodule.train_dataloader,
'valid': datamodule.valid_dataloader,
'test': datamodule.test_dataloader
}[stage]()
evaluator = Engine(model._inference)
# load a trained model if checkpointer or model_save_path is given
if model_save_path is not None:
checkpointer = fetch_last_checkpoint_model_filename(model_save_path)
if checkpointer is not None:
print(checkpointer)
to_load = {"model": model}
checkpoint = torch.load(checkpointer)
Checkpoint.load_objects(to_load=to_load, checkpoint=checkpoint)
evaluator.logger = setup_logger("Evaluator")
# attach metrics to the evaluator
for name, metric in self.metrics.items():
metric.attach(evaluator, name)
#
@evaluator.on(Events.EPOCH_COMPLETED)
def log_results(engine):
metrics = engine.state.metrics
log = 'Stage: %s' % stage
for name in self.metrics.keys():
log = '%s | %s: %f' % (log, name, metrics[name])
print(log)
# attach switch_batch for tensor device conversion
evaluator.add_event_handler(Events.ITERATION_STARTED, switch_batch, self.device)
if visualization is not None:
activation_dict = {'x': [], 'y_pred': [], 'y': [], 'z': []}
evaluator.add_event_handler(Events.ITERATION_COMPLETED, save_activation, activation_dict)
# run evaluator
evaluator.run(loader)
if visualization == 'tsne':
z = torch.cat(activation_dict['z'], dim=0).cpu().data.numpy()
x = torch.cat(activation_dict['x'], dim=0).cpu().data.numpy()
tsne(z, x, datamodule.ees_channels, os.getcwd())
def inference(self, model, datamodule, stage, electrode_index, target_index, checkpointer=None, model_save_path=None):
model = model.to(self.device)
all_params = datamodule.test_dataset.tensors[0]
all_targets = datamodule.test_dataset.tensors[1]
elec_encoding = datamodule.elec_encoding
print('Of {} available targets, selecting index {}'.format(all_targets.shape[0], target_index))
# load a trained model if checkpointer or model_save_path is given
if model_save_path is not None:
checkpointer = fetch_last_checkpoint_model_filename(model_save_path)
if checkpointer is not None:
print(checkpointer)
to_load = {"model": model}
checkpoint = torch.load(checkpointer, map_location=self.device)
Checkpoint.load_objects(to_load=to_load, checkpoint=checkpoint)
target = all_targets[target_index]
parameters = all_params[target_index]
if elec_encoding == 'onehot':
simulator = LocalSimulator(model, num_electrodes=parameters.shape[0]-2, electrode_index=electrode_index, device=self.device)
else:
simulator = GlobalSimulator(model, device=self.device)
inference = Inference(
elec_encoding=elec_encoding,
num_rounds=self.num_rounds,
num_simulations=self.num_simulations,
simulation_batch_size=self.simulation_batch_size,
training_batch_size=self.training_batch_size,
num_samples=self.num_samples,
filtering_ratio=self.filtering_ratio,
num_proposals=self.num_proposals,
timeout=self.timeout
)
# train NDE
if elec_encoding == 'pos':
pos = datamodule.xyi[:,:2]#torch.Tensor([*datamodule.xy2idx.keys()])
# pos[:,1] = pos[:,1]# * 2.5 # TODO:
width = datamodule.elec_size['w']
height = datamodule.elec_size['h']# / 2
else:
pos = None
width = height = None
train = True
# train = False
if train:
import time
start = time.time()
posterior = inference.train(simulator, target, _xy=pos, height=height, width=width)
torch.save(posterior, 'global_model.pth')
end = time.time()
print('elapsed time: %.1f sec' % (end - start))
else:
posterior = torch.load('global_model.pth')#'inference.train(simulator, target)
# posterior = torch.load('global_model_100K_5K.pth')#'inference.train(simulator, target)
if posterior is None:
# finish the inference process when it is timeout
return
# plot posterior samples
fig = inference.pairplot(posterior, target, parameters)
fig.savefig('targetIdx%d.png' % (target_index))
x, theta, log_probability = inference.sampling_proposals(simulator, posterior, target)
if elec_encoding == 'pos':
# select proposals only when these are within an electrode
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
mask = None
for c_x, c_y in pos:
mask_x = torch.logical_and((theta[:,2] < c_x + width/2), (theta[:,2] > c_x - width/2))
mask_y = torch.logical_and((theta[:,3] < c_y + height/2), (theta[:,3] > c_y - height/2))
if mask is None:
mask = torch.logical_and(mask_x, mask_y)
else:
mask = mask + torch.logical_and(mask_x, mask_y)
fig = plt.figure()
ax = fig.add_subplot()
ax.scatter(theta[:,2], theta[:,3], marker='o', color='green', facecolors='None', alpha=0.1, s=1)
ax.scatter(theta[mask][:,2], theta[mask][:,3], marker='o', color='blue', facecolors='None', alpha=0.2, s=1)
ax.scatter(pos[:,0], pos[:,1], marker='o', color='red', s=10)
# Add rectangles
for c_x, c_y in pos:
ax.add_patch(Rectangle(
xy=(c_x-width/2, c_y-height/2) ,width=width, height=height,
linewidth=1, color='blue', fill=False))
# ax.axis('equal')
plt.show()
# ax.set_autoscale_on(False)
ax.set_xlim((-1.5,1.5))
# ax.set_ylim((-1,1))
# ax.set_ylim((-2.5,2.5)) # TODO:
fig.savefig('proposedElectrodes_targetIdx%d.png' % target_index)
plt.close()
if mask.sum() == 0:
print('no proposals close to the electrodes')
return
x = x[mask]
theta = theta[mask]
log_probability = log_probability[mask]
x, theta, log_probability, dist = inference.filtering_proposals(x, target, theta, log_probability, metric='l1')
# x, theta, log_probability, dist = inference.filtering_proposals(x, target, theta, log_probability, metric='corr')
def xy2idx(xy):
x, y = xy
# return x,y
for c_x, c_y, idx in datamodule.xyi:
if (x < c_x + width/2) and (x > c_x - width/2):
if (y < c_y + height/2) and (y > c_y - height/2):
return idx.item()
# save proposals as JSON file
gt_ees = parameters.cpu().numpy()
gt_ees = datamodule.inverse_transform_ees(gt_ees[None,:])
x = x.cpu().numpy()
theta = theta.cpu().numpy()
theta = datamodule.inverse_transform_ees(theta)
if elec_encoding == 'onehot':
proposed_electrode = datamodule.transformers['ees']['parameterization'].idx2elec[2**electrode_index].item()
proposals = OrderedDict()
proposals['gt_emg'] = target.cpu().numpy().tolist()
proposals['gt_ees'] = {
'freq': gt_ees['freq'][0].item(),
'amp': gt_ees['amp'][0].item(),
'elec': gt_ees['elec'][0].tolist() if elec_encoding=='onehot' else xy2idx(gt_ees['elec'][0].tolist())
}
for n in range(x.shape[0]):
proposals['proposal_%d' % n] = {
'emg': x[n].tolist(),
'ees': {
'freq': theta['freq'][n].item(),
'amp': theta['amp'][n].item(),
'elec': proposed_electrode if elec_encoding=='onehot' else xy2idx(theta['elec'][n].tolist())
},
'log_probability': log_probability[n].item(),
'dist': dist[n].item()
}
# write JSON
with open('proposals_targetIdx%d.json' % target_index, 'w', encoding="utf-8") as fp:
json.dump(proposals, fp, ensure_ascii=False, indent="\t")