-
Notifications
You must be signed in to change notification settings - Fork 0
/
dsa_15_bst_2.html
1023 lines (961 loc) · 41.4 KB
/
dsa_15_bst_2.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!Doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<link href="css/fontawesome-free-6.2.1-web/css/all.css" rel="stylesheet">
<script src="lib/colorbrewer.v1.min.js" charset="utf-8"></script>
<script src="lib/colorStringStandalone.js" charset="utf-8"></script>
<script type="text/javascript" src="lib/jquery-2.2.4.min.js"></script>
<title>Design & Analysis: Algorithms</title>
<meta name="description" content="CS4851/6851 GSU class">
<meta name="author" content="Sergey M Plis">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<link rel="stylesheet" href="dist/reset.css">
<link rel="stylesheet" href="dist/reveal.css">
<!-- Code syntax highlighting -->
<link rel="stylesheet" href="plugin/highlight/monokai.css" id="highlight-theme">
<!-- <link rel="stylesheet" href="lib/css/zenburn.css"> -->
<link rel="stylesheet" href="css/custom.css">
<link rel="stylesheet" href="dist/theme/aml.css" id="theme">
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? 'css/print/pdf.css' : 'css/print/paper.scss';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
<script type="module" src="js/wc_code/wc-code.js"></script>
<!--Popup Window CSS-->
<style media="screen">
*,*:before,*:after{
padding: 0;
margin: 0;
box-sizing: border-box;
}
.popup{
background-color: #fdf6e3;
width: 80%;
padding: 30px 40px;
position: absolute;
transform: translate(-50%,-50%);
left: 50%;
top: 50%;
border-radius: 8px;
font-family: "Poppins",sans-serif;
display: none;
z-index: 1000;
text-align: left;
max-height: 90%;
overflow: scroll;
}
.popup button{
display: block;
margin: 0 0 20px auto;
background-color: transparent;
font-size: 30px;
color: #fdf6e3;
background: #03549a;
border-radius: 100%;
width: 40px;
height: 40px;
border: none;
outline: none;
cursor: pointer;
}
</style>
</head>
<body>
<div class="popup" id="div4code.1">
<!-- <button id="close">×</button> -->
<wc-code-zone mode="python">
<wc-code style="font-size: 14pt;" theme="monokai" mode="python" file-name="python-file.py">
<script type="wc-content">
class Node:
parent = None
lft = None
rgt = None
def __init__(self, key, val):
self.key = key
self.val = val
def insert(node, key, val):
if node is None: return Node(key, val) # Empty leaf: Add node here
if node.key == key: node.val = val # Found key: Replace val
elif key < node.key: # Less than the key?
node.lft = insert(node.lft, key, val) # Go left
node.lft.parent = node # and the parent
else: # Otherwise...
node.rgt = insert(node.rgt, key, val) # Go right
node.rgt.parent = node # and the parent
return node
def search(node, key):
if node is None: raise KeyError # Empty leaf: It`s not here
if node.key == key: return node # Found key: Return val
elif key < node.key: # Less than the key?
return search(node.lft, key) # Go left
else: # Otherwise...
return search(node.rgt, key) # Go right
class Tree: # Simple wrapper
root = None
def __setitem__(self, key, val):
self.root = insert(self.root, key, val)
def __getitem__(self, key):
return search(self.root, key)
def __contains__(self, key):
try: search(self.root, key)
except KeyError: return False
return True
def inorder_tree_walk(node):
if node is not None:
inorder_tree_walk(node.lft)
print(node.key)
inorder_tree_walk(node.rgt)
def tree_min(node):
while node.lft is not None:
node = node.lft
return node
def tree_max(node):
while node.rgt is not None:
node = node.rgt
return node
def successor(node):
if node.rgt is not None:
return tree_min(node.rgt)
p = node.parent
while p is not None and p.rgt is node:
node = p
p = node.parent
return p
def predecessor(node):
if node.lft is not None:
return tree_max(node.lft)
p = node.parent
while p is not None and p.lft is node:
node = p
p = node.parent
return p
def transplant(tree, u, v):
if u.parent is None:
tree.root = v
elif u is u.parent.lft:
u.parent.lft = v
else:
u.parent.rgt = v
if v is not None:
v.parent = u.parent
def tree_delete(tree, node):
if node.lft is None:
tree_transplant(tree, node, node.rgt)
elif node.rgt is None:
tree_transplant(tree, node, node.lft)
else:
y = tree_min(node.rgt)
if y is not node.rgt:
tree_transplant(tree, y, y.rgt)
y.rgt = node.rgt
y.rgt.parent = y
tree_transplant(tree, node, y)
y.lft = node.lft
y.lft.parent = y
def print2DUtil(node, space, COUNT=10):
if node is None:
return
space += COUNT
print2DUtil(node.rgt, space, COUNT=COUNT)
prefix = ''.join(['.']*(space-COUNT))
print(prefix + str(node.key))
print2DUtil(node.lft, space, COUNT=COUNT)
def print2D(node, COUNT=10):
print2DUtil(node, 0, COUNT=COUNT)
t = Tree()
t[8] = 8
t[4] = 4
t[12] = 12
t[2] = 2
t[6] = 6
t[10] = 10
t[14] = 14
t[1] = 1
t[3] = 3
t[5] = 5
t[7] = 7
t[9] = 9
t[11] = 11
t[13] = 13
t[15] = 15
print2D(t.root)
</script>
</wc-code>
</wc-code-zone>
</div>
<div class="reveal">
<!-- In between the <div="reveal"> and the <div class="slides">-->
<!-- <header style="position: absolute; top: 10px; left: 100px; z-index: 500; font-size:100px;background-color: rgba(0,0,0,0); text-align: center !important"></header> -->
<!-- In between the <div="reveal"> and the <div class="slides">-->
<!-- Any section element inside of this container is displayed as a slide -->
<div class="slides">
<section>
<section>
<p>
<h2>Design & Analysis: Algorithms</h2>
<h2>15: Binary Search Trees II</h2>
<h2>Divide & Conquer</h2>
<p>
</section>
<section data-fullscreen>
<h3>Schedule</h3>
<row style="width: 120%">
<col50>
<table style="font-size:16px">
<tr>
<th>#</th>
<th>date</th>
<th>topic</th>
<th>description</th>
</tr>
<tr><td>1</td>
<td> 09-Jan-2023 </td>
<td> Introduction and Introductions </td>
<td> </td>
</tr>
<tr><td>2</td>
<td> 11-Jan-2023 </td>
<td> Basics of Algorithm Analysis </td>
<td> </td>
</tr>
<tr style='background-color: #FBEEC2;'><td> </td><td> 16-Jan-2023 </td><td> <em>Holiday</em> </td><td> </td></tr>
<tr><td> 3 </td><td> 18-Jan-2023 </td><td> Asymptotic Analysis </td><td> hw1 </td></tr>
<tr><td> 4 </td><td> 23-Jan-2023 </td><td> Recurrence Relations: Substitution </td><td> </td></tr>
<tr><td> 5 </td><td> 25-Jan-2023 </td><td> Recursion Trees and the Master Theorem </td><td> </td></tr>
<tr><td> 6 </td><td> 30-Jan-2023 </td><td> Recurrence Relations: Annihilators </td></td></td><td> </td></tr>
<tr><td> 7 </td><td> 1-Feb-2023 </td><td> Recurrence Relations: Transformations </td><td> hw2, hw1 <i class="fa-solid fa-calendar-check"></i> </td></tr>
<tr><td> 8 </td><td> 6-Feb-2023 </td><td> Heap & Invariants</td><td> </td></tr>
<tr><td> 9 </td><td> 8-Feb-2023 </td><td> Queue & Qsort </td><td> </td></tr>
<tr><td> 10 </td><td> 13-Feb-2023 </td><td> Analyzing RQsort </td><td> </td></tr>
<tr><td> 11 </td><td> 15-Feb-2023 </td><td> Comparison-based Sorting Analysis </td><td> hw3, hw2 <i class="fa-solid fa-calendar-check"></i> </td></tr>
<tr><td> 12 </td><td> 20-Feb-2023 </td><td> Dictionary</td><td> </td></tr>
<tr><td> 13 </td><td> 22-Feb-2023 </td><td> Open Address Hashing & Refresher </td><td> </td></tr>
<tr style='background-color: #E5DDCB;'><td> 14 </td><td> 27-Feb-2023 </td><td> Midterm exam </td><td> <em>midpoint</em> </td></tr>
<tr><td> 15 </td><td> 1-Mar-2023 </td><td> Binary Search Trees I </td><td> </td></tr>
<tr style='background-color: #E0E4CC;'><td> 16 </td><td> 6-Mar-2023 </td><td> Binary Search Trees II </td><td>hw4, hw3 <i class="fa-solid fa-calendar-check"></i> <i class='fa fa-map-marker' style='color: #FA6900;'></i></td></tr>
<tr><td> 17 </td><td> 8-Mar-2023 </td><td> Balanced Binary Search Trees </td><td> </td></tr>
</table>
</col50>
<col50>
<table style="font-size:14px; vertical-align: top;">
<tr>
<th>#</th>
<th>date</th>
<th>topic</th>
<th>description</th>
</tr>
<tr style='background-color: #FBEEC2;'><td> </td><td> 13-Mar-2023 </td><td> <em>Spring Break<em> </td><td> </td></tr>
<tr style='background-color: #FBEEC2;'><td> </td><td> 15-Mar-2023 </td><td> <em>Spring Break<em> </td><td> </td></tr>
<tr><td> 18 </td><td> 20-Mar-2023 </td><td> </td><td>hw5, hw4 <i class="fa-solid fa-calendar-check"></i> </td></tr>
<tr><td> 19 </td><td> 22-Mar-2023 </td><td> </td><td> </td></tr>
<tr><td> 20 </td><td> 27-Mar-2023 </td><td> </td><td> </td></tr>
<tr><td> 21 </td><td> 29-Mar-2023 </td><td> </td><td></td></tr>
<tr><td> 22 </td><td> 3-Apr-2023 </td><td> </td><td> hw6, hw5 <i class="fa-solid fa-calendar-check"></i> </td></tr>
<tr><td> 23 </td><td> 5-Apr-2023 </td><td> </td><td> </td></tr>
<tr><td> 24 </td><td> 10-Apr-2023 </td><td> </td><td> </td></tr>
<tr><td> 25 </td><td> 12-Apr-2023 </td><td> </td><td> hw7, hw6 <i class="fa-solid fa-calendar-check"></i> </td></tr>
<tr><td> 26 </td><td> 17-Apr-2023 </td><td> </td><td> </td></tr>
<tr><td> 27 </td><td> 19-Apr-2023 </td><td> </td><td> </td></tr>
<tr><td> 28 </td><td> 24-Apr-2023 </td><td> </td><td> hw7 <i class="fa-solid fa-calendar-check"></i> </td></tr>
<tr style='background-color: #E5DDCB;'><td> 29 </td><td> 26-Apr-2023 </td><td> Final exam </td><td> </td></tr>
<tr style='color: #ccd5d8ff;'><td> 30 </td><td> 2-May-2022 </td><td> </td><td> </td></tr>
<tr style='color: #ccd5d8ff;'><td> 31 </td><td> 4-May-2022 </td><td> </td><td> </td></tr>
</table>
</col50>
</row>
</section>
<section>
<h3>Outline of the lecture</h3>
<ul>
<li class="fragment roll-in"> Binary Search Trees
</ul>
</section>
</section>
<section>
<section data-background="figures/pale_color_trees.jpeg">
<h1 style="text-shadow: 4px 4px 4px #002b36; color: #f1f1f1; margin-top: -100px;">Binary Search Trees</h1>
</section>
<section>
<h2>Binary Search Trees</h2>
<blockquote style="background-color: #93a1a1; color: #fdf6e3; width:100%; text-align:left;" class="fragment roll-in" >
Binary search trees (BST) are another data structure for implementing the dictionary ADT
</blockquote>
</section>
<section>
<h2><alert>Red</alert>-<span style="color:#000000;">Black</span> Trees</h2>
<div style="text-align: left;">
<alert>Red</alert>-<span style="color:#000000;">Black</span> trees (a kind of binary tree) also implement the Dictionary ADT:
</div>
<ul>
<li class="fragment roll-in"><b><code>Insert(x)</code></b> - $O(\log n)$ time
<li class="fragment roll-in"><b><code>Lookup(x)</code></b> - $O(\log n)$ time
<li class="fragment roll-in"><b><code>Delete(x)</code></b> - $O(\log n)$ time
</ul>
</section>
<section>
<h2>Why BST</h2>
<ul>
<li class="fragment roll-in"> When would you use a Search Tree for Dictionary?
<li class="fragment roll-in"> When need a hard guarantee on the worst case run times ("mission critical" code)
<li class="fragment roll-in"> When want something more dynamic than a hash table (do not want to enlarge a hash table when the load factor gets too large)
<li class="fragment roll-in"> Search trees can implement other important operations (Min/Max, Predecessor/Successor)
</ul>
</section>
<section>
<h2>Search Tree Operations</h2>
<ul>
<li class="fragment roll-in"><b><code>Insert</code></b>
<li class="fragment roll-in"><b><code>Lookup</code></b>
<li class="fragment roll-in"><b><code>Delete</code></b>
<li class="fragment roll-in"><b><code>Minimum/Maximum</code></b>
<li class="fragment roll-in"><b><code>Predecessor/Successor</code></b>
</ul>
</section>
<section>
<h2>What is a BST?</h2>
<ul>
<li class="fragment roll-in">It’s a binary tree
<li class="fragment roll-in">Each node holds a key and record field, and a pointer to left
and right children
<li class="fragment roll-in">Binary Search Tree Property is maintained
</ul>
</section>
<section>
<h2>Binary Search Tree Property</h2>
<blockquote style="background-color: #93a1a1; color: #fdf6e3; width:100%; text-align:left;" class="fragment roll-in" >
Let $x$ be a node in a binary search tree. If $y$ is a node in the
left subtree of $x$, then <code>key(y)≤key(x)</code>. If $y$ is a node in the
right subtree of $x$ then <code>key(x)≤key(y)</code>
</blockquote>
</section>
<section data-vertical-align-top data-background="figures/balanced_bst.svg" data-background-size="contain">
</section>
<section>
<h2>Compare with max heap</h2>
<row>
<col50>
<img style="border:0; box-shadow: 0px 0px 0px rgba(255, 255, 255, 255);" width="100%"
src="figures/balanced_bst.svg" alt="BST">
</col50>
<col50>
<img style="border:0; box-shadow: 0px 0px 0px rgba(255, 255, 255, 255);" width="100%"
src="figures/max_heap_15.svg" alt="HEAP">
</col50>
</row>
</section>
<section data-vertical-align-top data-background="figures/balanced_bst_path.svg" data-background-size="contain">
</section>
<section>
<h2>Simplified implementation</h2>
<pre class="python fragment roll-in" style="width: 99%; font-size: 12pt;"><code data-trim data-noescape data-line-numbers>
class Node:
lft = None
rgt = None
def __init__(self, key, val):
self.key = key
self.val = val
class Tree: # Simple wrapper
root = None
def __setitem__(self, key, val):
self.root = insert(self.root, key, val)
def __getitem__(self, key):
return search(self.root, key)
def __contains__(self, key):
try: search(self.root, key)
except KeyError: return False
return True
def insert(node, key, val):
if node is None: return Node(key, val) # Empty leaf: Add node here
if node.key == key: node.val = val # Found key: Replace val
elif key < node.key: # Less than the key?
node.lft = insert(node.lft, key, val) # Go left
else: # Otherwise...
node.rgt = insert(node.rgt, key, val) # Go right
return node
def search(node, key):
if node is None: raise KeyError # Empty leaf: It is not here
if node.key == key: return node.val # Found key: Return val
elif key < node.key: # Less than the key?
return search(node.lft, key) # Go left
else: # Otherwise...
return search(node.rgt, key) # Go right
</code></pre>
</section>
<section>
<h2>Inorder Tree Walk</h2>
<pre class="python fragment roll-in" style="width: 99%; font-size: 22pt;"><code data-trim data-noescape data-line-numbers>
def inorder_tree_walk(node):
if node is not None:
inorder_tree_walk(node.lft)
print(node.key)
inorder_tree_walk(node.rgt)
</code></pre>
</section>
<section>
<h2>Inorder Walk</h2>
<ul>
<li class="fragment roll-in">BSTs are arranged in such a way that we can print out the
elements in sorted order in $\Theta(n)$ time
<li class="fragment roll-in">Inorder Tree-Walk does this
</ul>
</section>
<section data-background="figures/balanced_bst.svg" data-background-size="contain">
<pre class="python fragment roll-in" style="width: 40%; font-size: 12pt; margin-top: -100pt;"><code data-trim data-noescape data-line-numbers>
def inorder_tree_walk(node):
if node is not None:
inorder_tree_walk(node.lft)
print(node.key)
inorder_tree_walk(node.rgt)
</code></pre>
</section>
<section>
<h2>Analysis</h2>
<ul>
<li class="fragment roll-in">Correctness?
<li class="fragment roll-in">Run time?
</ul>
</section>
<section>
<h2>Search in a Binary Tree</h2>
<pre class="python fragment roll-in" style="width: 99%; font-size: 15pt;"><code data-trim data-noescape data-line-numbers>
def search(node, key):
if node is None: raise KeyError # Empty leaf: It is not here
if node.key == key: return node.val # Found key: Return val
elif key < node.key: # Less than the key?
return search(node.lft, key) # Go left
else: # Otherwise...
return search(node.rgt, key) # Go right
</code></pre>
</section>
<section>
<h2>Analysis</h2>
<ul>
<li class="fragment roll-in">Let $h$ be the height of the tree
<li class="fragment roll-in">The run time is $O(h)$
<li class="fragment roll-in">Correctness???
</ul>
</section>
<section>
<h2>In Class Exercise <img style="border:0; box-shadow: 0px 0px 0px rgba(150, 150, 255, 1);" width="100"
src="figures/dolphin_swim.webp" alt="dolphin"></h2>
<ul style="list-style: none;">
<li class="fragment roll-in"><span class="fa-li"><i class="fa-regular fa-circle-question"></i></span> What is the loop invariant for <code>tree_search</code>?
<li class="fragment roll-in"><span class="fa-li"><i class="fa-regular fa-circle-question"></i></span> What is Initialization?
<li class="fragment roll-in"><span class="fa-li"><i class="fa-regular fa-circle-question"></i></span> Maintenance?
<li class="fragment roll-in"><span class="fa-li"><i class="fa-regular fa-circle-question"></i></span> Termination?
</ul>
</section>
<section>
<h2>Loop Invariant Review</h2>
<div style="text-align:left;">
A useful tool for proving correctness is loop invariants. Three
things must be shown about a loop invariant
</div>
<ul>
<li class="fragment roll-in"><b>Initialization:</b> Invariant is true before first iteration of loop
<li class="fragment roll-in"><b>Maintenance:</b> If invariant is true before iteration $i$, it is also true before iteration $i + 1$
<li class="fragment roll-in"><b>Termination:</b> When the loop terminates, the invariant gives a property which can be used to show the algorithm is correct
</ul>
</section>
<section>
<h2>Loop Invariant Review</h2>
<ul>
<li class="fragment roll-in">When <b>Initialization</b> and <b>Maintenance</b> hold, the loop invariant is true prior to every iteration of the loop
<li class="fragment roll-in">Similar to mathematical induction: must show both base
case and inductive step
<li class="fragment roll-in">Showing the invariant holds before the first iteration is like
the base case. Showing the invariant holds from iteration to
iteration is like the inductive step
</ul>
</section>
<section>
<h2>Loop Invariant Review</h2>
<ul>
<li class="fragment roll-in"><b>Termination</b> shows that if the loop invariant is true after the last iteration of the loop, then the algorithm is correct
<li class="fragment roll-in">The termination condition is different than induction
</ul>
</section>
<section>
<h2>Choosing Loop Invariants</h2>
<ul>
<li class="fragment roll-in" style="list-style: none;"><span class="fa-li"><i class="fa-regular fa-circle-question"></i></span> How do we choose the right loop invariant for an algorithm?
<li class="fragment roll-in">A1: There is no standard recipe for doing this. It’s like
choosing the right guess for the solution to a recurrence
relation.
<li class="fragment roll-in">A2: Following is one possible recipe:
<ol style="font-size: 18pt;">
<li class="fragment roll-in"> Study the algorithm and list what important invariants
seem true during iterations of the loop - it may help to
simulate the algorithm on small inputs to get this list of
invariants
<li class="fragment roll-in"> From the list of invariants, select one which seems strong
enough to prove the correctness of the algorithm
<li class="fragment roll-in"> Try to show <b>Initialization</b>, <b>Maintenance</b> and <b>Termination</b>
for this invariant. If you’re unable to show all three properties, go back to the step 1.
</ol>
</ul>
</section>
<section>
<h2>Answers</h2>
<ul>
<li class="fragment roll-in">To show: If key k exists in the tree, <code>search</code> returns the
elem with key $k$, otherwise <code>search</code> throws an exception KeyError.
<li class="fragment roll-in"><b>Loop Invariant:</b> If key $k$ exists in the tree, then it exists in the subtree rooted at node $x$
</ul>
</section>
<section>
<h2>Answers: initialization</h2>
<ul>
<li class="fragment roll-in"><b>Initialization:</b> Before the first
iteration, $x$ is the root of the entire tree, therefor if key $k$
exists in the tree, then it exists in the subtree rooted at node $x$
</ul>
</section>
<section>
<h2>Answers: maintenance</h2>
<ul style="margin-top: -30px; font-size: 24pt;">
<li class="fragment roll-in"><b>Maintenance:</b> Assume at the
beginning of the procedure, it’s true that if key $k$ exists in the
tree that it is in the subtree rooted at node $x$. There are three
cases that can occur during the procedure:
<ul>
<li class="fragment roll-in"> Case 1: $key(x)$ is $k$. In this case, the procedure terminates
and returns $x$, so the invariant continues to hold
<li class="fragment roll-in"> Case 2: $k < key(x)$. In this case, by the BST Property,
all keys in the subtree rooted on the right child of $x$ are
greater than $k$ (since $key(x) > k$). Thus, if $k$ exists in the
subtree rooted at $x$, it must exist in the subtree rooted at
<code>x.lft</code>.
<li class="fragment roll-in"> Case 3: $k > key(x)$. In this case, by the BST Property, All
keys in the subtree rooted on the right child of $x$ are less
than $k$ (since $key(x) < k$). Thus, if $k$ exists in the subtree
rooted at $x$, it must exist in the subtree rooted at <code>x.rgt</code>.
</ul>
</ul>
</section>
<section>
<h2>Answers: termination</h2>
</section>
<section>
<h2>Tree min/max</h2>
<ul>
<li class="fragment roll-in"><code>tree_min(x)</code>: Return the leftmost child in the tree rooted at $x$
<pre class="python fragment roll-in" style="width: 99%; font-size: 15pt;"><code data-trim data-noescape data-line-numbers>
def tree_min(node):
while node.lft is not None:
node = node.lft
return node
</code></pre>
<li class="fragment roll-in"><code>tree_max(x)</code>: Return the rightmost child in the tree rooted at $x$
<pre class="python fragment roll-in" style="width: 99%; font-size: 15pt;"><code data-trim data-noescape data-line-numbers>
def tree_max(node):
while node.rgt is not None:
node = node.rgt
return node
</code></pre>
</ul>
</section>
<section>
<row style="width: 115%; margin-left:-50px;">
<col50>
<h2>Tree-Successor</h2>
<pre class="python fragment roll-in" style="width: 99%; font-size: 15pt;"><code data-trim data-noescape data-line-numbers>
def successor(node):
if node.rgt is not None:
return tree_min(node.rgt)
p = node.parent
while p is not None and p.rgt is node:
node = p
p = node.parent
return p
</code></pre>
</col50>
<col50>
<h2>Tree-Predecessor</h2>
<pre class="python fragment roll-in" style="width: 99%; font-size: 15pt;"><code data-trim data-noescape data-line-numbers>
def predecessor(node):
if node.lft is not None:
return tree_max(node.lft)
p = node.parent
while p is not None and p.lft is node:
node = p
p = node.parent
return p
</code></pre>
</col50>
</row>
</section>
<section>
<h2>Successor Intuition</h2>
<ul>
<li class="fragment roll-in">Case 1: If right subtree of $x$ is non-empty, <code>successor(x)</code> is
just the leftmost node in the right subtree
<li class="fragment roll-in">Case 2: If the right subtree of $x$ is empty and $x$ has a successor, then <code>successor(x)</code> is the lowest ancestor of $x$ whose
left child is also an ancestor of $x$
</ul>
</section>
<section>
<h2>Modified implementation</h2>
<pre class="python fragment roll-in" style="width: 99%; font-size: 16pt;"><code data-trim data-noescape data-line-numbers="|2">
class Node:
parent = None
lft = None
rgt = None
def __init__(self, key, val):
self.key = key
self.val = val
class Tree: # Simple wrapper
root = None
def __setitem__(self, key, val):
self.root = insert(self.root, key, val)
def __getitem__(self, key):
return search(self.root, key)
def __contains__(self, key):
try: search(self.root, key)
except KeyError: return False
return True
</code></pre>
</section>
<section>
<h2>Insertion</h2>
<pre class="python fragment roll-in" style="width: 99%; font-size: 15pt;"><code data-trim data-noescape data-line-numbers="|6,9">
def insert(node, key, val):
if node is None: return Node(key, val) # Empty leaf: Add node here
if node.key == key: node.val = val # Found key: Replace val
elif key < node.key: # Less than the key?
node.lft = insert(node.lft, key, val) # Go left
node.lft.parent = node # and the parent
else: # Otherwise...
node.rgt = insert(node.rgt, key, val) # Go right
node.rgt.parent = node # and the parent
return node
</code></pre>
</section>
<section>
<h2>Deletion</h2>
<ul>
<li class="fragment roll-in">Basically there are three cases, two are easy
and one is tricky
<li class="fragment roll-in">Case 1: The node to delete has no children. Then we just
delete the node
<li class="fragment roll-in">Case 2: The node to delete has one child. Then we delete
the node and “splice” together the two resulting trees
</ul>
</section>
<section>
<h2>Deletion: tricky case</h2>
Case 3: The node, $x$ to be deleted has two children
<ol>
<li class="fragment roll-in"> Swap $x$ with <code>successor(x)</code> (<code>successor(x)</code> has no more than 1
child (why?))
<li class="fragment roll-in"> Remove $x$, using the procedure for case 1 or case 2.
</ol>
</section>
<section data-vertical-align-top data-background="figures/BST_delete.svg" data-background-size="contain">
</section>
<section>
<h2>Deletion Implementation</h2>
<row style="width: 115%; margin-left:-50px;">
<col40>
<h3>Transplant</h3>
<pre class="python fragment roll-in" style="width: 99%; font-size: 15pt;"><code data-trim data-noescape data-line-numbers>
def transplant(tree, u, v):
if u.parent is None:
tree.root = v
elif u is u.parent.lft:
u.parent.lft = v
else:
u.parent.rgt = v
if v is not None:
v.parent = u.parent
</code></pre>
</col40>
<col60>
<h3>Delete</h3>
<pre class="python fragment roll-in" style="width: 99%; font-size: 15pt;"><code data-trim data-noescape data-line-numbers>
def tree_delete(tree, node):
if node.lft is None:
tree_transplant(tree, node, node.rgt)
elif node.rgt is None:
tree_transplant(tree, node, node.lft)
else:
y = tree_min(node.rgt)
if y is not node.rgt:
tree_transplant(tree, y, y.rgt)
y.rgt = node.rgt
y.rgt.parent = y
tree_transplant(tree, node, y)
y.lft = node.lft
y.lft.parent = y
</code></pre>
</col60>
</row>
</section>
<section id="code.1">
</section>
<section>
<h2>Analysis</h2>
<ul>
<li class="fragment roll-in">All of these operations take $O(h)$ time where $h$ is the height
of the tree
<li class="fragment roll-in">If $n$ is the number of nodes in the tree, in the worst case, $h$
is $O(n)$
<li class="fragment roll-in">However, if we can keep the tree balanced, we can ensure
that $h = O(\log n)$
<li class="fragment roll-in"><alert>Red</alert>-<span style="color:#000000;">Black</span> trees can maintain a balanced BST
</ul>
</section>
<section>
<h2>Randomly Built BST</h2>
<ul>
<li class="fragment roll-in">What if we build a binary search tree by inserting a bunch of
elements at random?
<li class="fragment roll-in" style="list-style: none;"><span class="fa-li"><i class="fa-regular fa-circle-question"></i></span> What will be the average depth of a node in such a
randomly built tree? We’ll show that it’s $O(\log n)$
<li class="fragment roll-in">For a tree $T$ and node $x$, let $d(x, T )$ be the depth of node $x$
in $T$
<li class="fragment roll-in">Define the total path length, $P(T)$, to be the sum over all
nodes $x$ in $T$ of $d(x, T)$
</ul>
</section>
<section>
<h2>Analysis</h2>
<ul>
<li class="fragment roll-in">Note that the average depth of a node in $T$ is
$$
\frac{1}{n} \underset{x\in T}{\sum} d(x,T) = \frac{1}{n} P(T)
$$
<li class="fragment roll-in">Thus we want to show that $P (T) = O(n \log n)$
</ul>
</section>
<section>
<h2>Analysis</h2>
<ul>
<li class="fragment roll-in">Let $T_l$ , $T_r$ be the left and right subtrees of $T$ respectively.
Let $n$ be the number of nodes in $T$
<li class="fragment roll-in">Then $P (T ) = P (T_l ) + P (T_r ) + n − 1$. Why?
</ul>
</section>
<section>
<h2>Analysis</h2>
<ul>
<li class="fragment roll-in">Let $P (n)$ be the expected total depth of all nodes in a randomly built binary tree with $n$ nodes
<li class="fragment roll-in">Note that for all $i$, $0 \leq i \leq n − 1$, the probability that $T_l$ has
$i$ nodes and $T_r$ has $n − i − 1$ nodes is $1/n$.
<li class="fragment roll-in">Thus $P (n) = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n-i-1)+n-1)$
</ul>
</section>
<section>
<h2>Analysis</h2>
<span style="font-size: 22pt;">
\begin{align}
P(n) & = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n-i-1)+n-1)\\
& = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n-i-1)) + \frac{1}{n} \sum_{i=0}^{n-1}(n-1)\\
& = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n-i-1)) + \Theta(n)\\
& = \frac{1}{n} \sum_{i=0}^{n-1} P(i) + \frac{1}{n} \sum_{i=0}^{n-1} P(n-i-1) + \Theta(n)\\
& = \frac{2}{n} \sum_{i=0}^{n-1} P(i) + \Theta(n)\\
\end{align}
</span>
</section>
<section>
<h2>Analysis</h2>
<ul>
<li class="fragment roll-in"> We have $P(n) = \frac{2}{n} \sum_{i=0}^{n-1} P(i) + \Theta(n)$
<li class="fragment roll-in"> The same as randomized Quicksort recurrence
<li class="fragment roll-in"> $P (n) = O(n \log n)$ (proof left as homework)
</ul>
</section>
<section>
<h2>Take Away</h2>
<ul style="width: 105%;">
<li class="fragment roll-in">$P (n)$ is the expected total depth of all nodes in a randomly
built binary tree with n nodes.
<li class="fragment roll-in">We’ve shown that $P (n) = O(n \log n)$
<li class="fragment roll-in">There are $n$ nodes total
<li class="fragment roll-in">Thus the expected average depth of a node is $O(\log n)$
<li class="fragment roll-in">The expected average depth of a node in a randomly built
binary tree is $O(\log n)$
<li class="fragment roll-in">This implies that operations like search, insert, delete take
expected time $O(\log n)$ for a randomly built binary tree
</ul>
</section>
<section>
<h2><i class="fa-solid fa-triangle-exclamation"></i> Warning <i class="fa-solid fa-triangle-exclamation"></i></h2>
<ul>
<li class="fragment roll-in">In many cases, data is not inserted randomly into a binary
search tree
<li class="fragment roll-in">I.e. many binary search trees are not “randomly built”
<li class="fragment roll-in">For example, data might be inserted into the binary search
tree in almost sorted order
<li class="fragment roll-in">Then the BST would not be randomly built, and so the
expected average depth of the nodes would not be $O(\log n)$
</ul>
</section>
</section>
<section>
<h2>See you</h2>
Wednesday March $8^{th}$
</section>
</div>
</div>
<script src="dist/reveal.js"></script>
<!-- <link rel="stylesheet" href="lib/css/monokai.css"> -->
<script src="plugin/highlight/highlight.js"></script>
<script src="plugin/math/math.js"></script>
<script src="plugin/chalkboard/plugin.js"></script>
<script src="plugin/notes/notes.js"></script>
<script src="plugin/zoom/zoom.js"></script>
<script src="plugin/menu/menu.js"></script>
<script type="text/javascript">
// Event start load section on slide
Reveal.addEventListener('slidechanged', function(event) {
//-- check if current slide with code
var sectionID = Reveal.getCurrentSlide().id;
if(sectionID === "code.1") {
document.getElementById("div4code.1").style.display = "block";
} else {
document.getElementById("div4code.1").style.display = "none"
}
});
</script>
<script>
// Full list of configuration options available at:
// https://github.com/hakimel/reveal.js#configuration
let notes = document.querySelectorAll('aside.notes');
notes.forEach(n => {
let html = n.innerHTML;
html = html.trim().replace(/\n/g, '<br/>');
n.innerHTML = html;
});
Reveal.initialize({
// history: true,
hash: true,
margin: 0.01,
minScale: 0.01,
maxScale: 1.23,
menu: {
themes: true,
openSlideNumber: true,
openButton: false,
},
customcontrols: {
slideNumberCSS : 'position: fixed; display: block; right: 90px; top: auto; left: auto; width: 50px; bottom: 30px; z-index: 31; font-family: Helvetica, sans-serif; font-size: 12px; line-height: 1; padding: 5px; text-align: center; border-radius: 10px; background-color: rgba(128,128,128,.5)',
controls: [
{ icon: '<i class="fa fa-caret-left"></i>',
css: 'position: fixed; right: 60px; bottom: 30px; z-index: 30; font-size: 24px;',
action: 'Reveal.prev(); return false;'
},
{ icon: '<i class="fa fa-caret-right"></i>',
css: 'position: fixed; right: 30px; bottom: 30px; z-index: 30; font-size: 24px;',
action: 'Reveal.next(); return false;'
}
]
},
chalkboard: {
boardmarkerWidth: 1,
chalkWidth: 2,
chalkEffect: 1,
slideWidth: Reveal.width,
slideHeight: Reveal.height,
toggleNotesButton: false,
toggleChalkboardButton: false,
//src: "chalkboards/chalkboard_em2.json",
readOnly: false,
theme: "blackboard",
eraser: { src: "plugin/chalkboard/img/sponge.png", radius: 30},
},
math: {
mathjax: 'https://cdn.jsdelivr.net/gh/mathjax/mathjax@2.7.8/MathJax.js',
config: 'TeX-AMS_SVG-full',
// pass other options into `MathJax.Hub.Config()`
TeX: {
Macros: {
RR: '\\mathbb{R}',
PP: '\\mathbb{P}',
EE: '\\mathbb{E}',
NN: '\\mathbb{N}',
vth: '\\vec{\\theta}',
loss: '{\\cal l}',
hclass: '{\\cal H}',
CD: '{\\cal D}',
def: '\\stackrel{\\text{def}}{=}',
pag: ['\\text{pa}_{{\cal G}^{#1}}(#2)}', 2],
vec: ['\\boldsymbol{\\mathbf #1}', 1],
set: [ '\\left\\{#1 \\; : \\; #2\\right\\}', 2 ],
bm: ['\\boldsymbol{\\mathbf #1}', 1],
argmin: ['\\operatorname\{arg\\,min\\,\}'],
argmax: ['\\operatorname\{arg\\,max\\,\}'],
prob: ["\\mbox{#1$\\left(#2\\right)$}", 2],
floor: ["\\lfloor #1 \\rfloor",1]
},
loader: {load: ['[tex]/color']},
extensions: ["color.js"],
tex: {packages: {'[+]': ['color']}},
svg: {
fontCache: 'global'
}
}
},
plugins: [ RevealMath, RevealChalkboard, RevealHighlight, RevealNotes, RevealZoom, RevealMenu ],
});
Reveal.configure({ fragments: true }); // set false when developing to see everything at once
Reveal.configure({ slideNumber: true });
//Reveal.configure({ history: true });
Reveal.configure({ slideNumber: 'c / t' });
Reveal.addEventListener( 'darkside', function() {
document.getElementById('theme').setAttribute('href','dist/theme/aml_dark.css');
}, false );
Reveal.addEventListener( 'brightside', function() {
document.getElementById('theme').setAttribute('href','dist/theme/aml.css');
}, false );
</script>
<style type="text/css">
/* 1. Style header/footer <div> so they are positioned as desired. */
#header-left {
position: absolute;
top: 0%;
left: 0%;
}
#header-right {
position: absolute;
top: 0%;
right: 0%;
}
#footer-left {
position: absolute;
bottom: 0%;
left: 0%;
}
</style>
<!-- // 2. Create hidden header/footer -->
<div id="hidden" style="background; display:none;">
<div id="header">
<div id="header-left"><h4>CS4520</h4></div>
<div id="header-right"><h4>Algorithms</h4></div>