-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathtrain.py
751 lines (621 loc) · 29.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
# Copyright (c) 2021 VISTEC - Vidyasirimedhi Institute of Science and Technology
# Distribute under MIT License
# Authors:
# - Suttisak Wizadwongsa <suttisak.w_s19[-at-]vistec.ac.th>
# - Pakkapon Phongthawee <pakkapon.p_s19[-at-]vistec.ac.th>
# - Jiraphon Yenphraphai <jiraphony_pro[-at-]vistec.ac.th>
# - Supasorn Suwajanakorn <supasorn.s[-at-]vistec.ac.th>
from __future__ import division
from __future__ import print_function
import argparse
import getpass
import torch as pt
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision.utils import save_image, make_grid
from torch.utils.tensorboard import SummaryWriter
import os, sys, json
import numpy as np
from skimage import io, transform
from datetime import datetime
from utils.utils import *
from utils.mpi_utils import *
from utils.mlp import *
from utils.colmap_runner import colmapGenPoses
parser = argparse.ArgumentParser()
#training schedule
parser.add_argument('-epochs', type=int, default=4000, help='total epochs to train')
parser.add_argument('-steps', type=int, default=-1, help='total steps to train. In our paper, we proposed to use epoch instead.')
parser.add_argument('-tb_saveimage', type=int, default=50, help='write an output image to tensorboard for every <tb_saveimage> epochs')
parser.add_argument('-tb_savempi', type=int, default=200, help='generate MPI (WebGL) and measure PSNR/SSIM of validation image for every <tb_savempi> epochs')
parser.add_argument('-checkpoint', type=int, default=100, help='save checkpoint for every <checkpoint> epochs. Be aware that! It will replace the previous checkpoint.')
parser.add_argument('-tb_toc',type=int, default=500, help="print output to terminal for every tb_toc epochs")
#lr schedule
parser.add_argument('-lrc', type=float, default=10, help='the number of times of lr using for learning rate of explicit basis (k0).')
parser.add_argument('-lr', type=float, default=1e-3, help='learning rate of a multi-layer perceptron')
parser.add_argument('-decay_epoch', type=int, default=1333, help='the number of epochs for decay learning rate')
parser.add_argument('-decay_rate', type=float, default=0.1, help='ratio of decay rate at every <decay_epoch> epochs')
#network (First MLP)
parser.add_argument('-ray', type=int, default=8000, help='the number of sampled ray that is used to train in each step')
parser.add_argument('-hidden', type=int, default=384, help='the number of hidden node of the main MLP')
parser.add_argument('-mlp', type=int, default=4, help='the number of hidden layer of the main MLP')
parser.add_argument('-pos_level', type=int, default=10, help='the number of positional encoding in terms of image size. We recommend to set 2^(pos_level) > image_height and image_width')
parser.add_argument('-depth_level', type=int, default=8,help='the number of positional encoding in terms number of plane. We recommend to set 2^(depth_level) > layers * subplayers')
parser.add_argument('-lrelu_slope', type=float, default=0.01, help='slope of leaky relu')
parser.add_argument('-sigmoid_offset', type=float, default=5, help='sigmoid offset that is applied to alpha before sigmoid')
#basis (Second MLP)
parser.add_argument('-basis_hidden', type=int, default=64, help='the number of hidden node in the learned basis MLP')
parser.add_argument('-basis_mlp', type=int, default=1, help='the number of hidden layer in the learned basis MLP')
parser.add_argument('-basis_order', type=int, default=3, help='the number of positional encoding in terms of viewing angle')
parser.add_argument('-basis_out', type=int, default=8, help='the number of coeffcient output (N in equation 3 under seftion 3.1)')
#loss
parser.add_argument('-gradloss', type=float, default=0.05, help='hyperparameter for grad loss')
parser.add_argument('-tvc', type=float, default=0.03, help='hyperparameter for total variation regularizer')
#training and eval data
parser.add_argument('-scene', type=str, default="", help='directory to the scene')
parser.add_argument('-ref_img', type=str, default="", help='reference image, camera parameter of reference image is use to create MPI')
parser.add_argument('-dmin', type=float, default=-1, help='first plane depth')
parser.add_argument('-dmax', type=float, default=-1, help='last plane depth')
parser.add_argument('-invz', action='store_true', help='place MPI with inverse depth')
parser.add_argument('-scale', type=float, default=-1, help='scale the MPI size')
parser.add_argument('-llff_width', type=int, default=1008, help='if input dataset is LLFF it will resize the image to <llff_width>')
parser.add_argument('-deepview_width', type=int, default=800, help='if input dataset is deepview dataset, it will resize the image to <deepview_width>')
parser.add_argument('-train_ratio', type=float, default=0.875, help='ratio to split number of train/test (in case dataset doesn\'t specify how to split)')
parser.add_argument('-random_split', action='store_true', help='random split the train/test set. (in case dataset doesn\'t specify how to split)')
parser.add_argument('-num_workers', type=int, default=8, help='number of pytorch\'s dataloader worker')
parser.add_argument('-cv2resize', action='store_true', help='apply cv2.resize instead of skimage.transform.resize to match the score in our paper (see note in github readme for more detail) ')
#MPI
parser.add_argument('-offset', type=int, default=200, help='the offset (padding) of the MPI.')
parser.add_argument('-layers', type=int, default=16, help='the number of plane that stores base color')
parser.add_argument('-sublayers', type=int, default=12, help='the number of plane that share the same texture. (please refer to coefficient sharing under section 3.4 in the paper)')
#predict
parser.add_argument('-no_eval', action='store_true', help='do not measurement the score (PSNR/SSIM/LPIPS) ')
parser.add_argument('-no_csv', action='store_true', help="do not write CSV on evaluation")
parser.add_argument('-no_video', action='store_true', help="do not write the video on prediction")
parser.add_argument('-no_webgl', action='store_true', help='do not predict webgl (realtime demo) related content.')
parser.add_argument('-predict', action='store_true', help='predict validation images')
parser.add_argument('-eval_path', type=str, default='runs/evaluation/', help='path to save validation image')
parser.add_argument('-web_path', type=str, default='runs/html/', help='path to output real time demo')
parser.add_argument('-web_width', type=int, default=16000, help='max texture size (pixel) of realtime demo. WebGL on Highend PC is support up to 16384px, while mobile phone support only 4096px')
parser.add_argument('-http', action='store_true', help='serve real-time demo on http server')
parser.add_argument('-render_viewing', action='store_true', help='genereate view-dependent-effect video')
parser.add_argument('-render_nearest', action='store_true', help='genereate nearest input video')
parser.add_argument('-render_depth', action='store_true', help='generate depth')
# render path
parser.add_argument('-nice_llff', action='store_true', help="generate video that its rendering path matches real-forward facing dataset")
parser.add_argument('-nice_shiny', action='store_true', help="generate video that its rendering path matches shiny dataset")
#training utility
parser.add_argument('-model_dir', type=str, default="scene", help='model (scene) directory which store in runs/<model_dir>/')
parser.add_argument('-pretrained', type=str, default="", help='location of checkpoint file, if not provide will use model_dir instead')
parser.add_argument('-restart', action='store_true', help='delete old weight and retrain')
parser.add_argument('-clean', action='store_true', help='delete old weight without start training process')
#miscellaneous
parser.add_argument('-all_gpu',action='store_true',help="In multiple GPU training, We don't train MLP (data parallel) on the first GPU. This make training slower but we can utilize more VRAM on other GPU.")
args = parser.parse_args()
def computeHomographies(sfm, feature, planes):
fx = feature['fx'][0]
fy = feature['fy'][0]
px = feature['px'][0]
py = feature['py'][0]
new_r = feature['r'][0] @ sfm.ref_rT
new_t = (-new_r @ sfm.ref_t) + feature['t'][0]
n = pt.tensor([[0.0, 0.0, 1.0]])
Ha = new_r.t()
Hb = Ha @ new_t @ n @ Ha
Hc = (n @ Ha @ new_t)[0]
ki = pt.tensor([[fx, 0, px],
[0, fy, py],
[0, 0, 1]], dtype=pt.float).inverse()
tt = sfm.ref_cam
ref_k = pt.tensor( [[tt['fx'], 0, tt['px']],
[0, tt['fy'], tt['py']],
[0, 0, 1]])
planes_mat = pt.Tensor(planes).view(-1, 1, 1)
return (ref_k @ (Ha + Hb / (-planes_mat - Hc))) @ ki
def computeHomoWarp(sfm, input_shape, input_offset,
output_shape, selection,
feature, planes, inv=False, inv_offset = False):
selection = selection.cuda()
# coords: (sel, 3)
coords = pt.stack([selection % output_shape[1], selection // output_shape[1],
pt.ones_like(selection)], -1).float()
# Hs: (n, 3, 3)
Hs = computeHomographies(sfm, feature, planes)
if inv: Hs = Hs.inverse()
if inv_offset:
coords[:, :2] += input_offset
prod = coords @ pt.transpose(Hs, 1, 2).cuda()
scale = pt.tensor([input_shape[1] - 1, input_shape[0] - 1]).cuda()
ref_coords = prod[:, :, :2] / prod[:, :, 2:]
if not inv_offset:
warp = ((ref_coords + input_offset) / scale.view(1, 1, 2)) * 2 - 1
else:
warp = ((ref_coords) / scale.view(1, 1, 2)) * 2 - 1
warp = warp[:, :, None]
return warp, ref_coords
def totalVariation(images):
pixel_dif1 = images[:, :, 1:, :] - images[:, :, :-1, :]
pixel_dif2 = images[:, :, :, 1:] - images[:, :, :, :-1]
sum_axis = [1, 2, 3]
tot_var = (
pt.sum(pt.abs(pixel_dif1), dim=sum_axis) +
pt.sum(pt.abs(pixel_dif2), dim=sum_axis))
return tot_var / (images.shape[2]-1) / (images.shape[3]-1)
def cumprod_exclusive(x):
cp = pt.cumprod(x, 0)
cp = pt.roll(cp, 1, 0)
cp[0] = 1.0
return cp
def getWarp3d(warp, interpolate = False):
if not interpolate:
depths = pt.repeat_interleave(pt.linspace(-1, 1, args.layers), args.sublayers).view(1, -1, 1, 1, 1).cuda()
else:
depths = pt.linspace(-1, 1, args.layers * args.sublayers).view(1, -1, 1, 1, 1).cuda()
warp3d = warp[None] # 1, n, sel, 1, 2
warp3d = pt.cat([warp3d, pt.ones_like(warp3d[:, :, :, :, :1]) * depths], -1)
return warp3d
def normalized(v, dim):
return v / (pt.norm(v, dim=dim, keepdim=True) + 1e-7)
class Basis(nn.Module):
def __init__(self, shape, out_view):
super().__init__()
#choosing illumination model
self.order = args.basis_order
# network for learn basis
self.seq_basis = nn.DataParallel(
ReluMLP(
args.basis_mlp, #basis_mlp
args.basis_hidden, #basis_hidden
self.order * 4,
args.lrelu_slope,
out_node = args.basis_out, #basis_out
)
)
print('Basis Network:',self.seq_basis)
# positional encoding pre compute
self.pos_freq_viewing = pt.Tensor([(2 ** i) for i in range(self.order)]).view(1, 1, 1, 1, -1).cuda()
def forward(self, sfm, feature, ref_coords, warp, planes, coeff = None):
vi, xy = get_viewing_angle(sfm, feature, ref_coords, planes)
n, sel = vi.shape[:2]
# positional encoding for learn basis
hinv_xy = vi[..., :2, None] * self.pos_freq_viewing
big = pt.reshape(hinv_xy, [n, sel, 1, hinv_xy.shape[-2] * hinv_xy.shape[-1]])
vi = pt.cat([pt.sin(0.5*np.pi*big), pt.cos(0.5*np.pi*big)], -1)
out2 = self.seq_basis(vi)
out2 = pt.tanh(out2)
vi = out2.view(n, sel, 1, 1, -1)
coeff = coeff.view(coeff.shape[0], coeff.shape[1], coeff.shape[2], 3, -1)
coeff = pt.tanh(coeff)
illumination = pt.sum(coeff * vi,-1).permute([0, 3, 1, 2])
return illumination
def get_viewing_angle(sfm, feature, ref_coords, planes):
camera = sfm.ref_rT.t() @ feature["center"][0] + sfm.ref_t
# (n, rays, 2) -> (n, 2, rays)
coords = ref_coords.permute([0, 2, 1])
# (n, 2, rays) -> (n, 3, rays)
coords = pt.cat([coords, pt.ones_like(coords[:, :1])], 1)
# coords: (n, 3, rays)
# viewed planes: (n, 1, 1)
# xyz: (n, 3, rays)
xyz = coords * pt.Tensor(planes).view(-1, 1, 1).cuda()
ki = pt.tensor([[feature['fx'][0], 0, feature['px'][0]],
[0, feature['fy'][0], feature['py'][0]],
[0, 0, 1]], dtype=pt.float).inverse().cuda()
xyz = ki @ xyz
# camera: (3, 1) -> (1, 3, 1)
# xyz: (n, 3, rays)
# viewing_angle: (n, 3, rays)
# viewing_angle = normalized(camera[None].cuda() - xyz, 1)
inv_viewing_angle = normalized(xyz - camera[None].cuda(), 1)
view = inv_viewing_angle.permute([0, 2, 1])
xyz = xyz.permute([0, 2, 1])
return view[:,:,None], xyz[:,:,None]
class Network(nn.Module):
def __init__(self, shape, sfm):
super(Network, self).__init__()
self.shape = [shape[2], shape[3]]
total_cuda = pt.cuda.device_count()
mlp_first_device = 1 if (not args.all_gpu) and total_cuda > 1 else 0
mlp_devices = list(range(mlp_first_device, total_cuda))
#mpi_c (k0) as an explicit
mpi_c = pt.empty((shape[0], 3, shape[2], shape[3]), device='cuda:0').uniform_(-1, 1)
self.mpi_c = nn.Parameter(mpi_c)
self.specular = Basis(shape, args.basis_out * 3).cuda()
self.seq1 = nn.DataParallel(
VanillaMLP(
args.mlp,
args.hidden,
args.pos_level,
args.depth_level,
args.lrelu_slope,
out_node = 1 + args.basis_out * 3,
first_gpu = mlp_first_device
),
device_ids = mlp_devices
)
self.seq1 = self.seq1.cuda("cuda:{}".format(mlp_first_device))
self.pos_freq = pt.Tensor([0.5 * np.pi * (2 ** i) for i in range(args.pos_level)] * 2).view(1, 1, 1, 2, -1).cuda()
self.depth_freq = pt.Tensor([0.5 * np.pi * (2 ** i) for i in range(args.depth_level)]).view(1, 1, 1, -1).cuda()
self.z_coords = pt.linspace(-1, 1, args.layers * args.sublayers).view(-1, 1, 1, 1).cuda()
if args.render_depth:
self.rainbow_mpi = np.zeros((shape[0], 3, shape[2], shape[3]), dtype=np.float32)
for i,s in enumerate(np.linspace(1, 0, shape[0])):
color = Rainbow(s)
for c in range(3):
self.rainbow_mpi[i,c] = color[c]
self.rainbow_mpi = pt.from_numpy(self.rainbow_mpi).to('cuda:0')
else:
self.rainbow_mpi = None
if sfm.dmin < 0 or sfm.dmax < 0:
raise ValueError("invalid dmin dmax")
self.planes = getPlanes(sfm, args.layers * args.sublayers)
print('Mpi Size: {}'.format(self.mpi_c.shape))
print('All combined layers: {}'.format(args.layers * args.sublayers))
print(self.planes)
print('Using inverse depth: {}, Min depth: {}, Max depth: {}'.format(sfm.invz == 1, self.planes[0],self.planes[-1]))
print('Layer of MLP: {}'.format(args.mlp + 2))
print('Hidden Channel of MLP: {}'.format(args.hidden))
print('Main Network',self.seq1)
def forward(self, sfm, feature, output_shape, selection):
''' Rendering
Args:
sfm: reference camera parameter
feature: target camera parameter
output_shape: [h, w]. Desired rendered image
selection: [ray]. pixel to train
Returns:
output: [1, 3, rays, 1] rendered image
'''
# (n, sel, 1, 2), (n, sel, 1, 1), (n, sel, 2)
warp, ref_coords = computeHomoWarp(sfm,
self.shape,
sfm.offset,
output_shape, selection,
feature, self.planes)
n = warp.shape[0]
sel = warp.shape[1]
# vxy: (n, sel, 1, 2, pos_level)
vxy = warp[:, :, :, :, None] * self.pos_freq
vxy = vxy.view(n, sel, 1, -1) # (n, sel, 1, pos_level*2)
# vz: (n, sel, 1, depth_level)
vz = pt.ones_like(warp[:, :, :, :1]) * self.z_coords * self.depth_freq
vxyz = pt.cat([vxy, vz], -1)
bigcoords = pt.cat([pt.sin(vxyz), pt.cos(vxyz)], -1)
# (n, sel, 1, out_node)
out = self.seq1(bigcoords).cuda()
node = 0
self.mpi_a = out[..., node:node + 1]
node += 1
# n, 1, sel, 1
self.mpi_a = self.mpi_a.view(self.mpi_a.shape[0], 1, self.mpi_a.shape[1], self.mpi_a.shape[2])
mpi_a_sig = pt.sigmoid(self.mpi_a - args.sigmoid_offset)
if args.render_depth:
# generate Rainbow MPI instead of real mpi to visualize the depth
# self.rainbow_mpi: n, 3, h, w warp: (n, sel, 1, 2)
# Need: N, C, Din, Hin, Win; N, Dout, Hout, Wout, 3
rainbow_3d = self.rainbow_mpi.permute([1, 0, 2, 3])[None]
warp3d = getWarp3d(warp)
#samples: N, C, Dout, Hout, Wout
samples = F.grid_sample(rainbow_3d, warp3d, align_corners=True)
# (layers, out_node, rays, 1)
rgb = samples[0].permute([1, 0, 2, 3])
else:
mpi_sig = pt.sigmoid(self.mpi_c)
# mpi_sig: n, 3, h, w warp: (n, sel, 1, 2)
# Need: N, C, Din, Hin, Win; N, Dout, Hout, Wout, 3
mpi_sig3d = mpi_sig.permute([1, 0, 2, 3])[None]
warp3d = getWarp3d(warp)
#samples: N, C, Dout, Hout, Wout
samples = F.grid_sample(mpi_sig3d, warp3d, align_corners=True)
# (layers, out_node, rays, 1)
rgb = samples[0].permute([1, 0, 2, 3])
cof = out[::args.sublayers, ..., node:]
cof = pt.repeat_interleave(cof, args.sublayers, 0)
self.illumination = self.specular(sfm, feature, ref_coords, warp, self.planes, coeff = cof)
# rgb: (layers, 3, rays, 1)
rgb = pt.clamp(rgb + self.illumination, 0.0, 1.0)
weight = cumprod_exclusive(1 - mpi_a_sig)
output = pt.sum(weight * rgb * mpi_a_sig, dim=0, keepdim=True)
return output
def getMPI(model, sfm, m = 1, dataloader = None):
''' convert from neural network to MPI planes
Args:
model: Neural net model
sfm: reference camera parameter
m: target camera parameter
dataloader:
Returns:
output: dict({
'mpi_c':'explicit coefficient k0',
'mpi_a':'alpha transparentcy',
'mpi_b':'basis',
'mpi_v':'Kn coefficient'
})
'''
sh = sfm.ref_cam['height'] + sfm.offset * 2
sw = sfm.ref_cam['width'] + sfm.offset * 2
#print((sh, sw))
y, x = pt.meshgrid([
(pt.arange(0, sh, dtype=pt.float)) / (sh-1) * 2 - 1,
(pt.arange(0, sw, dtype=pt.float)) / (sw-1) * 2 - 1])
coords = pt.cat([x[:,:,None].cuda(), y[:,:,None].cuda()], -1)
model.eval()
sh_v = 400
sw_v = 400
rangex, rangey = 0.7, 0.6
y_v, x_v = pt.meshgrid([
(pt.linspace(-rangey, rangey, sh_v)),
(pt.linspace(-rangex, rangex , sw_v))])
#viewing [sh_v, sh_w, 2]
viewing = pt.cat([x_v[:,:,None].cuda(), y_v[:,:,None].cuda()], -1)
#hinv_xy [1, sh_v, sh_w, 2 * pos_lev]
hinv_xy = viewing.view(1, sh_v, sw_v, 2, 1) * model.specular.pos_freq_viewing
hinv_xy = hinv_xy.view(1, sh_v, sw_v, -1)
#pe_view [1, sh_v, sw_v, 2 * 2 * pos_lev]
pe_view = pt.cat([pt.sin(0.5*np.pi *hinv_xy), pt.cos(0.5*np.pi *hinv_xy)], -1)
#out2 [1, sh, sw, num_basis]
out2 = model.specular.seq_basis(pe_view)
#imgs_b [num_basis, 1, sh_v, sw_v]
imgs_b = pt.tanh(out2.permute([3, 0, 1, 2])).cpu().detach()
n = args.layers * args.sublayers
imgs_c, imgs_a, imgs_v = [], [], []
with pt.no_grad():
for i in range(0, n, m):
#coords [sh, sw, 2] --> [1, sh, sw, 2, 1]
#vxy [1, sh, sw, 2, pos_lev] --> [1, sh, sw, 2*pos_lev]
vxy = coords.view(1, sh, sw, 2, 1) * model.pos_freq
vxy = vxy.view(1, sh, sw, -1)
#vz [1, sh, sw, depth_lev]
vz = pt.ones_like(coords.view(1, sh, sw, -1)[..., :1]) * model.z_coords[i:i+1] * model.depth_freq
#vxyz [1, sh, sw, 2*pos_lev + depth_lev]
vxyz = pt.cat([vxy, vz], -1)
bigcoords = pt.cat([pt.sin(vxyz), pt.cos(vxyz)], -1)
if sfm.offset > 270:
out = [model.seq1(bigy) for bigy in [bigcoords[:, :int(sh/2)], bigcoords[:, int(sh/2):]]]
out = pt.cat(out, 1)
else:
out = model.seq1(bigcoords)
node = 0
mpi_a = out[..., node:node + 1].cpu()
node +=1
mpi_a = mpi_a.view(mpi_a.shape[0], 1, mpi_a.shape[1], mpi_a.shape[2])
imgs_a.append(pt.sigmoid(mpi_a[0] - args.sigmoid_offset))
if i % args.sublayers == 0:
out = out[..., node:].cpu()
mpi_v = out.view(out.shape[0], out.shape[1], out.shape[2], 3, -1)
mpi_v = mpi_v.permute([0, 3, 1, 2, 4])
mpi_v = mpi_v[0]
mpi_v = pt.tanh(mpi_v)
imgs_v.append(mpi_v)
mpi_c_sig = pt.sigmoid(model.mpi_c)
mpi_a_sig = pt.stack(imgs_a, 0)
mpi_v_tanh = pt.stack(imgs_v, 0)
info = {
'mpi_c': mpi_c_sig.cpu(),
'mpi_a': mpi_a_sig.cpu(),
'mpi_v' : mpi_v_tanh.cpu(),
'mpi_b': imgs_b.cpu()
}
pt.cuda.empty_cache()
return info
def generateAlpha(model, dataset, dataloader, writer, runpath, suffix="", dataloader_train = None):
''' Prediction
Args.
model. --> trained model
dataset. --> valiade dataset
writer. --> tensorboard
'''
suffix_str = "/%06d" % suffix if isinstance(suffix, int) else "/"+str(suffix)
# create webgl only when using -predict or finish training
if not args.no_webgl and suffix =="":
info = getMPI(model, dataset.sfm, dataloader = dataloader_train)
outputCompactMPI(info,
dataset.sfm,
model.planes,
runpath + args.model_dir + suffix_str,
args.layers,
args.sublayers,
dataset.sfm.offset,
args.invz,
webpath=args.web_path,
web_width= args.web_width)
if not args.no_eval and len(dataloader) > 0:
out = evaluation(model,
dataset,
dataloader,
args.ray,
runpath + args.model_dir + suffix_str,
webpath=args.eval_path,
write_csv = not args.no_csv)
if writer is not None and isinstance(suffix, int):
for metrics, score in out.items():
writer.add_scalar('METRICS/{}'.format(metrics), score, suffix)
def setLearningRate(optimizer, epoch):
ds = int(epoch / args.decay_epoch)
lr = args.lr * (args.decay_rate ** ds)
optimizer.param_groups[0]['lr'] = lr
if args.lrc > 0:
optimizer.param_groups[1]['lr'] = lr * args.lrc
def train():
pt.manual_seed(1)
np.random.seed(1)
if args.restart or args.clean:
os.system("rm -rf " + "runs/" + args.model_dir)
if args.clean:
exit()
dpath = args.scene
dataset = loadDataset(dpath)
sampler_train, sampler_val, dataloader_train, dataloader_val = prepareDataloaders(
dataset,
dpath,
random_split = args.random_split,
train_ratio = args.train_ratio,
num_workers = args.num_workers
)
mpi_h = int(dataset.sfm.ref_cam['height'] + dataset.sfm.offset * 2)
mpi_w = int(dataset.sfm.ref_cam['width'] + dataset.sfm.offset * 2)
model = Network((args.layers,
4,
mpi_h,
mpi_w,
), dataset.sfm)
if args.lrc > 0:
#mlp use lower lr, while mpi_c, light dir intensity get higher lr
my_list = [name for name, params in model.named_parameters() if 'seq1' in name]
mlp_params = list(map(lambda x: x[1],list(filter(lambda kv: kv[0] in my_list, model.named_parameters()))))
other_params = list(map(lambda x: x[1],list(filter(lambda kv: kv[0] not in my_list, model.named_parameters()))))
optimizer = pt.optim.Adam([
{'params': mlp_params, 'lr': 0},
{'params': other_params, 'lr': 0}])
else:
optimizer = pt.optim.Adam(model.parameters(), lr=0)
start_epoch = 0
runpath = "runs/"
ckpt = runpath + args.model_dir + "/ckpt.pt"
if os.path.exists(ckpt):
start_epoch = loadFromCheckpoint(ckpt, model, optimizer)
elif args.pretrained != "":
start_epoch = loadFromCheckpoint(runpath + args.pretrained + "/ckpt.pt", model, optimizer)
step = start_epoch * len(sampler_train)
if args.epochs < 0 and args.steps < 0:
raise Exception("Need to specify epochs or steps")
if args.epochs < 0:
args.epochs = int(np.ceil(args.steps / len(sampler_train)))
if args.predict:
generateAlpha(model, dataset, dataloader_val, None, runpath, dataloader_train = dataloader_train)
if not args.no_video:
if args.render_nearest:
vid_path = 'video_nearest'
render_type = 'nearest'
elif args.render_viewing:
vid_path = 'viewing_output'
render_type = 'viewing'
elif args.render_depth:
vid_path = 'video_depth'
render_type = 'depth'
else:
vid_path = 'video_output'
render_type = 'default'
pt.cuda.empty_cache()
render_video(model, dataset, args.ray, os.path.join(runpath, vid_path, args.model_dir),
render_type = render_type, dataloader = dataloader_train)
if args.http:
serve_files(args.model_dir, args.web_path)
exit()
backupConfigAndCode(runpath)
ts = TrainingStatus(num_steps=args.epochs * len(sampler_train))
writer = SummaryWriter(runpath + args.model_dir)
writer.add_text('command',' '.join(sys.argv), 0)
ts.tic()
# shift by 1 epoch to save last epoch to tensorboard
for epoch in range(start_epoch, args.epochs+1):
epoch_loss_total = 0
epoch_mse = 0
model.train()
for i, feature in enumerate(dataloader_train):
#print("step: {}".format(i))
setLearningRate(optimizer, epoch)
optimizer.zero_grad()
output_shape = feature['image'].shape[-2:]
#sample L-shaped rays
sel = Lsel(output_shape, args.ray)
gt = feature['image']
gt = gt.view(gt.shape[0], gt.shape[1], gt.shape[2] * gt.shape[3])
gt = gt[:, :, sel, None].cuda()
output = model(dataset.sfm, feature, output_shape, sel)
mse = pt.mean((output - gt) ** 2)
loss_total = mse
#tvc regularizer
tvc = args.tvc * pt.mean(totalVariation(pt.sigmoid(model.mpi_c[:, :3])))
loss_total = loss_total + tvc
# grad loss
ox = output[:, :, 1::3, :] - output[:, :, 0::3, :]
oy = output[:, :, 2::3, :] - output[:, :, 0::3, :]
gx = gt[:, :, 1::3, :] - gt[:, :, 0::3, :]
gy = gt[:, :, 2::3, :] - gt[:, :, 0::3, :]
loss_total = loss_total + args.gradloss * (pt.mean(pt.abs(ox - gx)) + pt.mean(pt.abs(oy - gy)))
epoch_loss_total += loss_total
epoch_mse += mse
loss_total.backward()
optimizer.step()
step += 1
toc_msg = ts.toc(step, loss_total.item())
if step % args.tb_toc == 0: print(toc_msg)
ts.tic()
writer.add_scalar('loss/total', epoch_loss_total/len(sampler_train), epoch)
writer.add_scalar('loss/mse', epoch_mse/len(sampler_train), epoch)
if epoch % args.tb_saveimage == 0 and args.tb_saveimage > 0:
with pt.no_grad():
render = patch_render(model, dataset.sfm, feature, args.ray)
Spec = getMPI(model, dataset.sfm, m = args.sublayers, dataloader = None)
writer.add_image('images/render', pt.cat([feature['image'].cuda(), render], 2)[0], epoch)
writer.add_image('images/2_mpia', make_grid(F.interpolate(Spec['mpi_a'],
(int(mpi_h * 0.3), int(mpi_w * 0.3)),
mode='area'), 4), epoch)
writer.add_image('images/2_mpic', make_grid(F.interpolate(Spec['mpi_c'],
(int(mpi_h * 0.3), int(mpi_w * 0.3)),
mode='area'), 4), epoch)
pt.cuda.empty_cache()
if epoch % args.tb_savempi == 0 and args.tb_savempi > 0 and epoch > 0:
generateAlpha(model, dataset, dataloader_val, writer, runpath, epoch)
pt.cuda.empty_cache()
var = pt.mean(pt.std(model.illumination, 2)** 2)
mean = pt.mean(model.illumination)
writer.add_scalar('loss/illumination_mean', mean, epoch)
writer.add_scalar('loss/illumination_var', var, epoch)
if (epoch+1) % args.checkpoint == 0 or epoch == args.epochs-1:
if np.isnan(loss_total.item()):
exit()
checkpoint(ckpt, model, optimizer, epoch+1)
print('Finished Training')
generateAlpha(model, dataset, dataloader_val, None, runpath, dataloader_train = dataloader_train)
if not args.no_video:
render_video(model, dataset, args.ray, os.path.join(runpath, 'video_output', args.model_dir))
if args.http:
serve_files(args.model_dir, args.web_path)
def checkpoint(file, model, optimizer, epoch):
print("Checkpointing Model @ Epoch %d ..." % epoch)
pt.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, file)
def loadFromCheckpoint(file, model, optimizer):
checkpoint = pt.load(file)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
print("Loading %s Model @ Epoch %d" % (args.pretrained, start_epoch))
return start_epoch
def backupConfigAndCode(runpath):
if args.predict or args.clean:
return
model_path = os.path.join(runpath, args.model_dir)
os.makedirs(model_path, exist_ok = True)
now = datetime.now()
t = now.strftime("_%Y_%m_%d_%H:%M:%S")
with open(model_path + "/args.json", 'w') as out:
json.dump(vars(args), out, indent=2, sort_keys=True)
os.system("cp " + os.path.abspath(__file__) + " " + model_path + "/")
os.system("cp " + os.path.abspath(__file__) + " " + model_path + "/" + __file__.replace(".py", t + ".py"))
os.system("cp " + model_path + "/args.json " + model_path + "/args" + t + ".json")
def loadDataset(dpath):
# if dataset directory has only image, create LLFF poses
colmapGenPoses(dpath)
if args.scale == -1:
args.scale = getDatasetScale(dpath, args.deepview_width, args.llff_width)
if is_deepview(dpath) and args.ref_img == '':
with open(dpath + "/ref_image.txt", "r") as fi:
args.ref_img = str(fi.readline().strip())
render_style = 'llff' if args.nice_llff else 'shiny' if args.nice_shiny else ''
return OrbiterDataset(dpath, ref_img=args.ref_img, scale=args.scale,
dmin=args.dmin,
dmax=args.dmax,
invz=args.invz,
render_style=render_style,
offset=args.offset,
cv2resize=args.cv2resize)
if __name__ == "__main__":
sys.excepthook = colored_hook(os.path.dirname(os.path.realpath(__file__)))
train()