Skip to content

Latest commit

 

History

History
158 lines (106 loc) · 5.4 KB

readme.md

File metadata and controls

158 lines (106 loc) · 5.4 KB

ERNIE-Pytorch

This project is to convert ERNIE from paddlepaddle to huggingface's format (in Pytorch).

GitHub stars GitHub issues

News: ERNIE has been merged into huggingface/transformers@v4.22.0 !!

Get Started

pip install --upgrade transformers

Take ernie-1.0-base-zh as an example:

from transformers import BertTokenizer, ErnieModel

tokenizer = BertTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
model = ErnieModel.from_pretrained("nghuyong/ernie-1.0-base-zh")

Supported Models

Model Name Language Description
ernie-1.0-base-zh Chinese Layer:12, Heads:12, Hidden:768
ernie-2.0-base-en English Layer:12, Heads:12, Hidden:768
ernie-2.0-large-en English Layer:24, Heads:16, Hidden:1024
ernie-3.0-xbase-zh Chinese Layer:20, Heads:16, Hidden:1024
ernie-3.0-base-zh Chinese Layer:12, Heads:12, Hidden:768
ernie-3.0-medium-zh Chinese Layer:6, Heads:12, Hidden:768
ernie-3.0-mini-zh Chinese Layer:6, Heads:12, Hidden:384
ernie-3.0-micro-zh Chinese Layer:4, Heads:12, Hidden:384
ernie-3.0-nano-zh Chinese Layer:4, Heads:12, Hidden:312
ernie-health-zh Chinese Layer:12, Heads:12, Hidden:768
ernie-gram-zh Chinese Layer:12, Heads:12, Hidden:768

You can find all the supported models from huggingface's model hub: huggingface.co/nghuyong, and model details from paddle's official repo: PaddleNLP and ERNIE.

Details

I want to convert the model from paddle version by myself 😉

The following will take ernie-1.0-base-zh as an example to show how to convert.

  1. Download the paddle-paddle version ERNIE model. Execute the following code
import paddlenlp
tokenizer = paddlenlp.transformers.ErnieTokenizer.from_pretrained("ernie-1.0-base-zh")
model = paddlenlp.transformers.ErnieForMaskedLM.from_pretrained("ernie-1.0-base-zh")

And then you will get the model in ~/.paddlenlp/models/ernie-1.0-base-zh/, move to this project path.

  1. pip install -r requirements.txt
  2. python convert.py
  3. Now, a folder named convert will be in the project path, and there will be three files in this folder: config.json,pytorch_model.bin and vocab.txt.
I want to check the calculation results before and after model conversion 😁
python test.py --task logit_check

You will get the output:

huggingface result
pool output: [-1.         -1.          0.9981035  -0.9996652  -0.78173476 -1.          -0.9994901   0.97012603  0.85954666  0.9854131 ]

paddle result
pool output: [-0.99999976 -0.99999976  0.9981028  -0.9996651  -0.7815545  -0.99999976  -0.9994898   0.97014064  0.8594844   0.985419  ]

It can be seen that the result of our convert version is the same with the official paddlepaddle's version.

I want to reproduce the cloze test in ERNIE1.0's paper 😆
python test.py --task cloze_check

You will get the output:

huggingface result
prediction shape:	 torch.Size([47, 18000])
predict result:	 ['西', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '']
[CLS] logit:	 [-15.693626 -19.522263 -10.429456 ... -11.800728 -12.253127 -14.375117]

paddle result
prediction shape:	 [47, 18000]
predict result:	 ['西', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '']
[CLS] logit:	 [-15.693538 -19.521954 -10.429307 ... -11.800765 -12.253114 -14.375412]

Citation

If you use this work in a scientific publication, I would appreciate that you can also cite the following BibTex entry:

@misc{nghuyong2019@ERNIE-Pytorch,
  title={ERNIEPytorch},
  author={Yong Hu},
  howpublished={\url{https://github.com/nghuyong/ERNIE-Pytorch}},
  year={2019}
}