-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdemo_image_conditioned.py
197 lines (156 loc) · 6.85 KB
/
demo_image_conditioned.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import os
import copy
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image, ImageDraw, ImageFont
# OwlViT Detection
from transformers import OwlViTProcessor, OwlViTForObjectDetection
# segment anything
from segment_anything import build_sam, SamPredictor
import cv2
import numpy as np
import matplotlib.pyplot as plt
import gc
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def load_owlvit(checkpoint_path="owlvit-large-patch14", device='cpu'):
"""
Return: model, processor (for text inputs)
"""
processor = OwlViTProcessor.from_pretrained(f"google/{checkpoint_path}")
model = OwlViTForObjectDetection.from_pretrained(f"google/{checkpoint_path}")
model.to(device)
model.eval()
return model, processor
if __name__ == "__main__":
parser = argparse.ArgumentParser("OWL-ViT Segment Aything", add_help=True)
parser.add_argument("--image_path", "-i", type=str, required=True, help="path to image file")
parser.add_argument("--query_image_path", "-qi", type=str, default="", required=True, help="path to query image file")
parser.add_argument(
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
)
parser.add_argument('--owlvit_model', help='select model', default="owlvit-base-patch32", choices=["owlvit-base-patch32", "owlvit-base-patch16", "owlvit-large-patch14"])
parser.add_argument("--box_threshold", type=float, default=0.0, help="box threshold")
parser.add_argument("--nms_threshold", type=float, default=0.0, help="nms threshold")
parser.add_argument('--get_topk', help='detect topk boxes per class or not', action="store_true")
parser.add_argument('--device', help='select device', default="cuda:5", type=str)
args = parser.parse_args()
# cfg
# checkpoint_path = args.checkpoint_path # change the path of the model
image_path = args.image_path
output_dir = args.output_dir
box_threshold = args.box_threshold
nms_threshold = args.nms_threshold
if args.get_topk:
box_threshold = 0.0
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image & texts
image = Image.open(args.image_path)
# load OWL-ViT model
model, processor = load_owlvit(checkpoint_path=args.owlvit_model, device=args.device)
# run object detection model
with torch.no_grad():
query_image = Image.open(args.query_image_path).convert('RGB')
inputs = processor(query_images=query_image, images=image, return_tensors="pt").to(args.device)
outputs = model.image_guided_detection(**inputs)
# Target image sizes (height, width) to rescale box predictions [batch_size, 2]
target_sizes = torch.Tensor([image.size[::-1]])
# Convert outputs (bounding boxes and class logits) to COCO API
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=box_threshold, nms_threshold=nms_threshold, target_sizes=target_sizes.to(args.device))
scores = torch.sigmoid(outputs.logits)
topk_scores, topk_idxs = torch.topk(scores, k=1, dim=1)
i = 0 # Retrieve predictions for the first image
if args.get_topk:
topk_idxs = topk_idxs.squeeze(1).tolist()
topk_boxes = results[i]['boxes'][topk_idxs]
topk_scores = topk_scores.view(1, -1)
boxes, scores = topk_boxes, topk_scores
else:
boxes, scores = results[i]["boxes"], results[i]["scores"]
# Print detected objects and rescaled box coordinates
for box, score in zip(boxes, scores):
box = [round(i, 2) for i in box.tolist()]
print(f"Detected object with confidence {round(score.item(), 3)} at location {box}")
boxes = boxes.cpu().detach().numpy()
normalized_boxes = copy.deepcopy(boxes)
# # visualize pred
size = image.size
pred_dict = {
"boxes": normalized_boxes,
"size": [size[1], size[0]], # H, W
"labels": ["Detected" for _ in range(len(normalized_boxes))]
}
# release the OWL-ViT
model.cpu()
del model
gc.collect()
# torch.cuda.empty_cache()
# run segment anything (SAM)
predictor = SamPredictor(build_sam(checkpoint="./sam_vit_h_4b8939.pth"))
image = cv2.imread(args.image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
H, W = size[1], size[0]
for i in range(boxes.shape[0]):
boxes[i] = torch.Tensor(boxes[i])
boxes = torch.tensor(boxes, device=predictor.device)
transformed_boxes = predictor.transform.apply_boxes_torch(boxes, image.shape[:2])
masks, _, _ = predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box in boxes:
show_box(box.numpy(), plt.gca())
plt.axis('off')
plt.savefig(f"./{output_dir}/owlvit_segment_anything_output.jpg")
# grounded results
image_pil = Image.open(args.image_path)
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
image_with_box.save(os.path.join(f"./{output_dir}/owlvit_box.jpg"))