-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdeepnovo_worker_io.py
697 lines (593 loc) · 28.9 KB
/
deepnovo_worker_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# Copyright 2017 Hieu Tran. All Rights Reserved.
#
# DeepNovo is publicly available for non-commercial uses.
# ==============================================================================
"""TODO(nh2tran): docstring."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import os
import numpy as np
import pickle
import deepnovo_config
from deepnovo_cython_modules import process_spectrum
class WorkerIO(object):
"""TODO(nh2tran): docstring.
"""
def __init__(self, input_spectrum_file, input_feature_file, output_file=None):
"""TODO(nh2tran): docstring.
The input_file could be input_file or input_file_train/valid/test.
The output_file is None for train/valid/test cases.
During training we use two separate WorkerIO objects for train and valid.
"""
print("".join(["="] * 80)) # section-separating line
print("WorkerIO: __init__()")
# we currently use deepnovo_config to store both const & settings
# the settings should be shown in __init__() to keep track carefully
self.MZ_MAX = deepnovo_config.MZ_MAX
self.MZ_SIZE = deepnovo_config.MZ_SIZE
self.batch_size = deepnovo_config.batch_size
self.header_seq = deepnovo_config.FLAGS.header_seq
self.neighbor_size = deepnovo_config.neighbor_size
print("neighbor_size = {0:d}".format(self.neighbor_size))
self.dia_window = deepnovo_config.dia_window
self.input_spectrum_file = input_spectrum_file
self.input_feature_file = input_feature_file
self.output_file = output_file
print("input_spectrum_file = {0:s}".format(self.input_spectrum_file))
print("input_feature_file = {0:s}".format(self.input_feature_file))
print("output_file = {0:s}".format(self.output_file))
# keep the file handles open throughout the process to read/write batches
self.input_spectrum_handle = None
self.input_feature_handle = None
self.output_handle = None
# split data into batches
self.feature_index_list = []
self.feature_index_batch_list = []
self.feature_index_batch_count = 0
### store file location of each feature for random access
self.feature_location_list = []
# store the file location of all spectra for random access
self.spectrum_location_dict = {}
self.spectrum_rtinseconds_dict = {}
# record the status of spectra that have been read
self.feature_count = {"total": 0,
"read": 0,
"skipped": 0,
"skipped_mass": 0}
self.spectrum_count = 0
def close_input(self):
"""TODO(nh2tran): docstring."""
print("".join(["="] * 80)) # section-separating line
print("WorkerIO: close_input()")
self.input_spectrum_handle.close()
self.input_feature_handle.close()
def close_output(self):
"""TODO(nh2tran): docstring."""
print("".join(["="] * 80)) # section-separating line
print("WorkerIO: close_output()")
self.output_handle.close()
def get_spectrum(self, feature_index_batch):
"""TODO(nh2tran): docstring."""
#~ print("".join(["="] * 80)) # section-separating line
#~ print("WorkerIO: get_spectrum()")
spectrum_list = []
for feature_index in feature_index_batch:
# parse a feature
feature_location = self.feature_location_list[feature_index]
feature_id, feature_area, precursor_mz, precursor_charge, rt_mean, raw_sequence, scan_list, ms1_list = self._parse_feature(feature_location)
# skip if precursor_mass > MZ_MAX
precursor_mass = precursor_mz * precursor_charge - deepnovo_config.mass_H * precursor_charge
if precursor_mass > self.MZ_MAX:
self.feature_count["skipped"] += 1
self.feature_count["skipped_mass"] += 1
continue
self.feature_count["read"] += 1
# parse and process spectrum
(spectrum_holder,
spectrum_original_forward,
spectrum_original_backward,
scan_list_middle,
scan_list_original,
ms1_profile) = self._parse_spectrum(precursor_mz, precursor_mass, rt_mean, scan_list, ms1_list)
# update dataset
spectrum = {"feature_id": feature_id,#str(feature_index),#scan,
"feature_area": feature_area,
"raw_sequence": raw_sequence,
"precursor_mass": precursor_mass,
"spectrum_holder": spectrum_holder,
"spectrum_original_forward": spectrum_original_forward,
"spectrum_original_backward": spectrum_original_backward,
"precursor_mz": precursor_mz,
"precursor_charge": precursor_charge,
"scan_list_middle": scan_list_middle,
"scan_list_original": scan_list_original,
"ms1_profile": ms1_profile}
spectrum_list.append(spectrum)
return spectrum_list
def get_location(self):
"""TODO(nh2tran): docstring."""
print("".join(["="] * 80)) # section-separating line
print("WorkerIO: get_location()")
### store file location of each spectrum for random access {scan:location}
### since mgf file can be rather big, cache the locations for each spectrum mgf file.
spectrum_location_file = self.input_spectrum_file + '.locations.pkl'
if os.path.exists(spectrum_location_file):
print("WorkerIO: read cached spectrum locations")
with open(spectrum_location_file, 'rb') as fr:
data = pickle.load(fr)
self.spectrum_location_dict, self.spectrum_rtinseconds_dict, self.spectrum_count = data
else:
print("WorkerIO: build spectrum location from scratch")
spectrum_location_dict = {}
spectrum_rtinseconds_dict = {}
line = True
while line:
current_location = self.input_spectrum_handle.tell()
line = self.input_spectrum_handle.readline()
if "BEGIN IONS" in line:
spectrum_location = current_location
elif "SCANS=" in line:
scan = re.split('=|\r\n', line)[1]
spectrum_location_dict[scan] = spectrum_location
elif "RTINSECONDS=" in line:
rtinseconds = float(re.split('=|\r\n', line)[1])
spectrum_rtinseconds_dict[scan] = rtinseconds
self.spectrum_location_dict = spectrum_location_dict
self.spectrum_rtinseconds_dict = spectrum_rtinseconds_dict
self.spectrum_count = len(spectrum_location_dict)
with open(spectrum_location_file, 'wb') as fw:
pickle.dump((self.spectrum_location_dict, self.spectrum_rtinseconds_dict, self.spectrum_count), fw)
### store file location of each feature for random access
feature_location_list = []
# skip header line
_ = self.input_feature_handle.readline()
line = True
while line:
feature_location = self.input_feature_handle.tell()
feature_location_list.append(feature_location)
line = self.input_feature_handle.readline()
feature_location_list = feature_location_list[:-1]
self.feature_location_list = feature_location_list
self.feature_count["total"] = len(feature_location_list)
self.feature_index_list = range(self.feature_count["total"])
print("spectrum_count = {0:d}".format(self.spectrum_count))
print("feature_count[total] = {0:d}".format(self.feature_count["total"]))
def open_input(self):
"""TODO(nh2tran): docstring."""
print("".join(["="] * 80)) # section-separating line
print("WorkerIO: open_input()")
self.input_spectrum_handle = open(self.input_spectrum_file, 'r')
self.input_feature_handle = open(self.input_feature_file, 'r')
def open_output(self):
"""TODO(nh2tran): docstring."""
print("".join(["="] * 80)) # section-separating line
print("WorkerIO: open_output()")
self.output_handle = open(self.output_file, 'w')
self._print_prediction_header()
def split_feature_index(self):
"""TODO(nh2tran): docstring."""
print("".join(["="] * 80)) # section-separating line
print("WorkerIO: split_index()")
index_batch_list = [self.feature_index_list[i:(i+self.batch_size)]
for i in range(0,
self.feature_count["total"],
self.batch_size)]
self.feature_index_batch_list = index_batch_list
self.feature_index_batch_count = len(self.feature_index_batch_list)
def write_prediction(self, predicted_batch):
"""TODO(nh2tran): docstring."""
#~ print("".join(["="] * 80)) # section-separating line
#~ print("WorkerIO: write_prediction()")
for predicted in predicted_batch:
feature_id = predicted["feature_id"]
feature_area = str(predicted["feature_area"])
precursor_mz = str(predicted["precursor_mz"])
precursor_charge = str(predicted["precursor_charge"])
scan_list_middle = ";".join(predicted["scan_list_middle"])
scan_list_original = ";".join(predicted["scan_list_original"])
if predicted["sequence"]:
predicted_sequence = ';'.join([','.join(x) for x in predicted["sequence"]])
predicted_score = ';'.join(['{0:.2f}'.format(x) for x in predicted["score"]])
predicted_score_max = '{0:.2f}'.format(np.max(predicted["score"]))
predicted_position_score = ';'.join([
','.join(['{0:.2f}'.format(y) for y in x])
for x in predicted["position_score"]])
if "protein_access_id" in predicted:
# predicted_batch is returned from search_db
protein_access_id = predicted['protein_access_id']
else:
# predicted_batch is returned from search_denovo
protein_access_id = 'DENOVO'
else: # if no peptide found, write empty sequence to the output file
predicted_sequence = ""
predicted_score = ""
predicted_score_max = ""
predicted_position_score = ""
protein_access_id = ""
predicted_row = "\t".join([feature_id,
feature_area,
predicted_sequence,
predicted_score,
predicted_position_score,
precursor_mz,
precursor_charge,
protein_access_id,
scan_list_middle,
scan_list_original,
predicted_score_max])
print(predicted_row, file=self.output_handle, end="\n")
def _parse_spectrum(self, precursor_mz, precursor_mass, rt_mean, scan_list, ms1_list):
"""TODO(nh2tran): docstring."""
#~ print("".join(["="] * 80)) # section-separating line
#~ print("WorkerIO: _parse_spectrum()")
spectrum_holder_list = []
spectrum_original_forward_list = []
spectrum_original_backward_list = []
### select best neighbors from the scan_list by their distance to rt_mean
# probably move this selection to get_location(), run once rather than repeating
neighbor_count = len(scan_list)
best_scan_index = None
best_distance = float('inf')
for scan_index, scan in enumerate(scan_list):
distance = abs(self.spectrum_rtinseconds_dict[scan] - rt_mean)
if distance < best_distance:
best_distance = distance
best_scan_index = scan_index
neighbor_center = best_scan_index
neighbor_left_count = neighbor_center
neighbor_right_count = neighbor_count - neighbor_left_count - 1
neighbor_size_half = self.neighbor_size // 2
neighbor_left_count = min(neighbor_left_count, neighbor_size_half)
neighbor_right_count = min(neighbor_right_count, neighbor_size_half)
### padding zero arrays to the left if not enough neighbor spectra
if neighbor_left_count < neighbor_size_half:
for x in range(neighbor_size_half - neighbor_left_count):
spectrum_holder_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_original_forward_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_original_backward_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
### parse and add neighbor spectra
scan_list_middle = []
ms1_intensity_list_middle = []
for index in range(neighbor_center - neighbor_left_count, neighbor_center + neighbor_right_count + 1):
scan = scan_list[index]
scan_list_middle.append(scan)
ms1_entry = ms1_list[index]
ms1_intensity = float(re.split(':', ms1_entry)[1])
ms1_intensity_list_middle.append(ms1_intensity)
ms1_intensity_max = max(ms1_intensity_list_middle)
assert ms1_intensity_max > 0.0, "Error: Zero ms1_intensity_max"
ms1_intensity_list_middle = [x/ms1_intensity_max for x in ms1_intensity_list_middle]
for scan, ms1_intensity in zip(scan_list_middle, ms1_intensity_list_middle):
spectrum_location = self.spectrum_location_dict[scan]
self.input_spectrum_handle.seek(spectrum_location)
# parse header lines
line = self.input_spectrum_handle.readline()
assert "BEGIN IONS" in line, "Error: wrong input BEGIN IONS"
line = self.input_spectrum_handle.readline()
assert "TITLE=" in line, "Error: wrong input TITLE="
line = self.input_spectrum_handle.readline()
assert "PEPMASS=" in line, "Error: wrong input PEPMASS="
line = self.input_spectrum_handle.readline()
assert "CHARGE=" in line, "Error: wrong input CHARGE="
line = self.input_spectrum_handle.readline()
assert "SCANS=" in line, "Error: wrong input SCANS="
line = self.input_spectrum_handle.readline()
assert "RTINSECONDS=" in line, "Error: wrong input RTINSECONDS="
# parse fragment ions
mz_list, intensity_list = self._parse_spectrum_ion()
# pre-process spectrum
(spectrum_holder,
spectrum_original_forward,
spectrum_original_backward) = process_spectrum(mz_list,
intensity_list,
precursor_mass)
# normalize by each individual spectrum
#~ spectrum_holder /= np.max(spectrum_holder)
#~ spectrum_original_forward /= np.max(spectrum_original_forward)
#~ spectrum_original_backward /= np.max(spectrum_original_backward)
# weight by ms1 profile
#~ spectrum_holder *= ms1_intensity
#~ spectrum_original_forward *= ms1_intensity
#~ spectrum_original_backward *= ms1_intensity
# add spectrum to the neighbor list
spectrum_holder_list.append(spectrum_holder)
spectrum_original_forward_list.append(spectrum_original_forward)
spectrum_original_backward_list.append(spectrum_original_backward)
### padding zero arrays to the right if not enough neighbor spectra
if neighbor_right_count < neighbor_size_half:
for x in range(neighbor_size_half - neighbor_right_count):
spectrum_holder_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_original_forward_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_original_backward_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_holder = np.vstack(spectrum_holder_list)
spectrum_original_forward = np.vstack(spectrum_original_forward_list)
spectrum_original_backward = np.vstack(spectrum_original_backward_list)
assert spectrum_holder.shape == (self.neighbor_size,
self.MZ_SIZE), "Error:shape"
# spectrum-CNN normalization: by feature
spectrum_holder /= np.max(spectrum_holder)
# ms1_profile
for x in range(neighbor_size_half - neighbor_left_count):
ms1_intensity_list_middle = [0.0] + ms1_intensity_list_middle
for x in range(neighbor_size_half - neighbor_right_count):
ms1_intensity_list_middle = ms1_intensity_list_middle + [0.0]
assert len(ms1_intensity_list_middle) == self.neighbor_size, "Error: ms1 profile"
ms1_profile = np.array(ms1_intensity_list_middle)
return spectrum_holder, spectrum_original_forward, spectrum_original_backward, scan_list_middle, scan_list, ms1_profile
def _parse_feature(self, feature_location):
"""TODO(nh2tran): docstring."""
#~ print("".join(["="] * 80)) # section-separating line
#~ print("WorkerIO: _parse_feature()")
self.input_feature_handle.seek(feature_location)
line = self.input_feature_handle.readline()
line = re.split(',|\r|\n', line)
feature_id = line[deepnovo_config.col_feature_id]
feature_area_str = line[deepnovo_config.col_feature_area]
feature_area = float(feature_area_str) if feature_area_str else 1.0
precursor_mz = float(line[deepnovo_config.col_precursor_mz])
precursor_charge = float(line[deepnovo_config.col_precursor_charge])
rt_mean = float(line[deepnovo_config.col_rt_mean])
raw_sequence = line[deepnovo_config.col_raw_sequence]
scan_list = re.split(';', line[deepnovo_config.col_scan_list])
ms1_list = re.split(';', line[deepnovo_config.col_ms1_list])
assert len(scan_list) == len(ms1_list), "Error: scan_list and ms1_list not matched."
return feature_id, feature_area, precursor_mz, precursor_charge, rt_mean, raw_sequence, scan_list, ms1_list
def _parse_spectrum_ion(self):
"""TODO(nh2tran): docstring."""
#~ print("".join(["="] * 80)) # section-separating line
#~ print("WorkerIO: _parse_spectrum_ion()")
# ion
mz_list = []
intensity_list = []
line = self.input_spectrum_handle.readline()
while not "END IONS" in line:
mz, intensity = re.split(' |\n', line)[:2]
mz_float = float(mz)
intensity_float = float(intensity)
# skip an ion if its mass > MZ_MAX
if mz_float > self.MZ_MAX:
line = self.input_spectrum_handle.readline()
continue
mz_list.append(mz_float)
intensity_list.append(intensity_float)
line = self.input_spectrum_handle.readline()
return mz_list, intensity_list
def _print_prediction_header(self):
"""TODO(nh2tran): docstring."""
print("".join(["="] * 80)) # section-separating line
print("WorkerIO: _print_prediction_header()")
header_list = ["feature_id",
"feature_area",
"predicted_sequence",
"predicted_score",
"predicted_position_score",
"precursor_mz",
"precursor_charge",
"protein_access_id",
"scan_list_middle",
"scan_list_original",
"predicted_score_max"]
header_row = "\t".join(header_list)
print(header_row, file=self.output_handle, end="\n")
class WorkerI(object):
"""
This is a helper class designed for multi-process get_spectrum
"""
def __init__(self, worker_io):
self.MZ_MAX = worker_io.MZ_MAX
self.MZ_SIZE = worker_io.MZ_SIZE
self.batch_size = worker_io.batch_size
self.header_seq = worker_io.header_seq
self.neighbor_size = worker_io.neighbor_size
self.dia_window = worker_io.dia_window
self.input_spectrum_file = worker_io.input_spectrum_file
self.input_feature_file = worker_io.input_feature_file
self.output_file = worker_io.output_file
# split data into batches
self.feature_index_list = worker_io.feature_index_list
self.feature_index_batch_list = worker_io.feature_index_batch_list
self.feature_index_batch_count = worker_io.feature_index_batch_count
### store file location of each feature for random access
self.feature_location_list = worker_io.feature_location_list
# store the file location of all spectra for random access
self.spectrum_location_dict = worker_io.spectrum_location_dict
self.spectrum_rtinseconds_dict = worker_io.spectrum_rtinseconds_dict
# record the status of spectra that have been read
self.feature_count = worker_io.feature_count
self.spectrum_count = worker_io.spectrum_count
def get_spectrum(self, feature_index_batch, input_feature_file_handle, input_spectrum_file_handle):
"""TODO(nh2tran): docstring."""
#~ print("".join(["="] * 80)) # section-separating line
#~ print("WorkerIO: get_spectrum()")
spectrum_list = []
for feature_index in feature_index_batch:
# parse a feature
feature_location = self.feature_location_list[feature_index]
feature_id, feature_area, precursor_mz, precursor_charge, rt_mean, raw_sequence, scan_list, ms1_list = self._parse_feature(feature_location, input_feature_file_handle)
# skip if precursor_mass > MZ_MAX
precursor_mass = precursor_mz * precursor_charge - deepnovo_config.mass_H * precursor_charge
if precursor_mass > self.MZ_MAX:
continue
# parse and process spectrum
(spectrum_holder,
spectrum_original_forward,
spectrum_original_backward,
scan_list_middle,
scan_list_original,
ms1_profile) = self._parse_spectrum(precursor_mz, precursor_mass, rt_mean, scan_list, ms1_list, input_spectrum_file_handle)
# update dataset
spectrum = {"feature_id": feature_id,#str(feature_index),#scan,
"feature_area": feature_area,
"raw_sequence": raw_sequence,
"precursor_mass": precursor_mass,
"spectrum_holder": spectrum_holder,
"spectrum_original_forward": spectrum_original_forward,
"spectrum_original_backward": spectrum_original_backward,
"precursor_mz": precursor_mz,
"precursor_charge": precursor_charge,
"scan_list_middle": scan_list_middle,
"scan_list_original": scan_list_original,
"ms1_profile": ms1_profile}
spectrum_list.append(spectrum)
return spectrum_list
def _parse_feature(self, feature_location, input_file_handle):
"""TODO(nh2tran): docstring."""
#~ print("".join(["="] * 80)) # section-separating line
#~ print("WorkerIO: _parse_feature()")
input_file_handle.seek(feature_location)
line = input_file_handle.readline()
line = re.split(',|\r|\n', line)
feature_id = line[deepnovo_config.col_feature_id]
feature_area = 0#float(line[deepnovo_config.col_feature_area])
precursor_mz = float(line[deepnovo_config.col_precursor_mz])
precursor_charge = float(line[deepnovo_config.col_precursor_charge])
rt_mean = float(line[deepnovo_config.col_rt_mean])
raw_sequence = line[deepnovo_config.col_raw_sequence]
scan_list = re.split(';', line[deepnovo_config.col_scan_list])
ms1_list = re.split(';', line[deepnovo_config.col_ms1_list])
assert len(scan_list) == len(ms1_list), "Error: scan_list and ms1_list not matched."
return feature_id, feature_area, precursor_mz, precursor_charge, rt_mean, raw_sequence, scan_list, ms1_list
def _parse_spectrum(self, precursor_mz, precursor_mass, rt_mean, scan_list, ms1_list, input_file_handle):
"""TODO(nh2tran): docstring."""
#~ print("".join(["="] * 80)) # section-separating line
#~ print("WorkerIO: _parse_spectrum()")
spectrum_holder_list = []
spectrum_original_forward_list = []
spectrum_original_backward_list = []
### select best neighbors from the scan_list by their distance to rt_mean
# probably move this selection to get_location(), run once rather than repeating
neighbor_count = len(scan_list)
best_scan_index = None
best_distance = float('inf')
for scan_index, scan in enumerate(scan_list):
distance = abs(self.spectrum_rtinseconds_dict[scan] - rt_mean)
if distance < best_distance:
best_distance = distance
best_scan_index = scan_index
neighbor_center = best_scan_index
neighbor_left_count = neighbor_center
neighbor_right_count = neighbor_count - neighbor_left_count - 1
neighbor_size_half = self.neighbor_size // 2
neighbor_left_count = min(neighbor_left_count, neighbor_size_half)
neighbor_right_count = min(neighbor_right_count, neighbor_size_half)
### padding zero arrays to the left if not enough neighbor spectra
if neighbor_left_count < neighbor_size_half:
for x in range(neighbor_size_half - neighbor_left_count):
spectrum_holder_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_original_forward_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_original_backward_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
### parse and add neighbor spectra
scan_list_middle = []
ms1_intensity_list_middle = []
for index in range(neighbor_center - neighbor_left_count, neighbor_center + neighbor_right_count + 1):
scan = scan_list[index]
scan_list_middle.append(scan)
ms1_entry = ms1_list[index]
ms1_intensity = float(re.split(':', ms1_entry)[1])
ms1_intensity_list_middle.append(ms1_intensity)
ms1_intensity_max = max(ms1_intensity_list_middle)
assert ms1_intensity_max > 0.0, "Error: Zero ms1_intensity_max"
ms1_intensity_list_middle = [x/ms1_intensity_max for x in ms1_intensity_list_middle]
for scan, ms1_intensity in zip(scan_list_middle, ms1_intensity_list_middle):
spectrum_location = self.spectrum_location_dict[scan]
input_file_handle.seek(spectrum_location)
# parse header lines
line = input_file_handle.readline()
assert "BEGIN IONS" in line, "Error: wrong input BEGIN IONS"
line = input_file_handle.readline()
assert "TITLE=" in line, "Error: wrong input TITLE="
line = input_file_handle.readline()
assert "PEPMASS=" in line, "Error: wrong input PEPMASS="
line = input_file_handle.readline()
assert "CHARGE=" in line, "Error: wrong input CHARGE="
line = input_file_handle.readline()
assert "SCANS=" in line, "Error: wrong input SCANS="
line = input_file_handle.readline()
assert "RTINSECONDS=" in line, "Error: wrong input RTINSECONDS="
# parse fragment ions
mz_list, intensity_list = self._parse_spectrum_ion(input_file_handle)
# pre-process spectrum
(spectrum_holder,
spectrum_original_forward,
spectrum_original_backward) = process_spectrum(mz_list,
intensity_list,
precursor_mass)
# normalize by each individual spectrum
#~ spectrum_holder /= np.max(spectrum_holder)
#~ spectrum_original_forward /= np.max(spectrum_original_forward)
#~ spectrum_original_backward /= np.max(spectrum_original_backward)
# weight by ms1 profile
#~ spectrum_holder *= ms1_intensity
#~ spectrum_original_forward *= ms1_intensity
#~ spectrum_original_backward *= ms1_intensity
# add spectrum to the neighbor list
spectrum_holder_list.append(spectrum_holder)
spectrum_original_forward_list.append(spectrum_original_forward)
spectrum_original_backward_list.append(spectrum_original_backward)
### padding zero arrays to the right if not enough neighbor spectra
if neighbor_right_count < neighbor_size_half:
for x in range(neighbor_size_half - neighbor_right_count):
spectrum_holder_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_original_forward_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_original_backward_list.append(np.zeros(
shape=(1, self.MZ_SIZE),
dtype=np.float32))
spectrum_holder = np.vstack(spectrum_holder_list)
spectrum_original_forward = np.vstack(spectrum_original_forward_list)
spectrum_original_backward = np.vstack(spectrum_original_backward_list)
assert spectrum_holder.shape == (self.neighbor_size,
self.MZ_SIZE), "Error:shape"
# spectrum-CNN normalization: by feature
spectrum_holder /= np.max(spectrum_holder)
# ms1_profile
for x in range(neighbor_size_half - neighbor_left_count):
ms1_intensity_list_middle = [0.0] + ms1_intensity_list_middle
for x in range(neighbor_size_half - neighbor_right_count):
ms1_intensity_list_middle = ms1_intensity_list_middle + [0.0]
assert len(ms1_intensity_list_middle) == self.neighbor_size, "Error: ms1 profile"
ms1_profile = np.array(ms1_intensity_list_middle)
return spectrum_holder, spectrum_original_forward, spectrum_original_backward, scan_list_middle, scan_list, ms1_profile
def _parse_spectrum_ion(self, input_file_handle):
"""TODO(nh2tran): docstring."""
#~ print("".join(["="] * 80)) # section-separating line
#~ print("WorkerIO: _parse_spectrum_ion()")
# ion
mz_list = []
intensity_list = []
line = input_file_handle.readline()
while not "END IONS" in line:
mz, intensity = re.split(' |\n', line)[:2]
mz_float = float(mz)
intensity_float = float(intensity)
# skip an ion if its mass > MZ_MAX
if mz_float > self.MZ_MAX:
line = input_file_handle.readline()
continue
mz_list.append(mz_float)
intensity_list.append(intensity_float)
line = input_file_handle.readline()
return mz_list, intensity_list