-
Notifications
You must be signed in to change notification settings - Fork 1
/
Setting5.jl
128 lines (109 loc) · 2.48 KB
/
Setting5.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
using Distributions
InP=[250,250];
# User generation
No_MNO=5
N_UE_s=[20,19,19,18,20]
ReRate_MNO=[15,16,16,16,15]
# No_MNO=5
# N_UE_s=[20,18,20,15,25]
# ReRate_MNO=[15,12,18,10,16]
# F=5*10^4
# S=220
# B=1000
# L= 100*1024*8 #File size
N_UE=sum(N_UE_s,1)[1]
UE = zeros(2,N_UE)
uniform_loc = Uniform(1,500)
UE[1,1:N_UE]=rand(uniform_loc,N_UE)
UE[2,1:N_UE]=rand(uniform_loc,N_UE)
# BS and UE distance
d=zeros(N_UE,1)
for i = 1:N_UE
d[i,1]=norm(InP-UE[:,i])
end
d;
for i = 1:N_UE
if(d[i,1]==0)
d[i,1]=d[i,1]+randi([1,500]);
end
end
# pathloss calculation
PL = zeros(N_UE);
for i = 1:N_UE
PL[i]=34 + 40*log10(d[i,1]/1000);
end
# channel gain calculation
normal_distribution = Normal(0,8)
H = zeros(N_UE)
for i = 1:N_UE
H[i]= PL[i]+ rand(normal_distribution)
end
# Pr
Pr = zeros(N_UE)
for i = 1:N_UE
Pr[i]= 49 - H[i]
end
# C_u
gxP = 10.^(Pr/10)
SNR=zeros(N_UE)
C_u=zeros(N_UE)
for i = 1:N_UE
SNR[i]= gxP[i]/(20*10^(6-10.4))
C_u[i]=20*10^6*log2(1+SNR[i])
end
# matrix lambda_u,f
Zipf_parameter =rand(N_UE)
prob_u_f_temp=zeros(N_UE, F)
for i =1:N_UE
for j=1:F
prob_u_f_temp[i,j]=1/(j^Zipf_parameter[i])
end
end
prob_sum=1./(sum(prob_u_f_temp,2))
reprob_sum=repmat(prob_sum, 1,F)
prob_u_f= prob_u_f_temp .* reprob_sum
rate_vt=[ReRate_MNO[1]*ones(N_UE_s[1],1); ReRate_MNO[2]*ones(N_UE_s[2],1); ReRate_MNO[3]*ones(N_UE_s[3],1);
ReRate_MNO[4]*ones(N_UE_s[4],1); ReRate_MNO[5]*ones(N_UE_s[5],1)]
# rate_vt=[15*ones(N_UE_s[1],1); 12*ones(N_UE_s[2],1); 18*ones(N_UE_s[3],1); 10*ones(N_UE_s[4],1); 16*ones(N_UE_s[5],1)]
rate_matrix=repmat(rate_vt, 1,F)
lamb_u_f=rate_matrix.*prob_u_f
lamb_u=sum(lamb_u_f,2)
lamb_n = ReRate_MNO.*N_UE_s
# index bat dua user cua tung mvno
index=[1,21,40,59,77,97]
constant_hf=zeros(No_MNO,F)
sum_n=zeros(No_MNO,F)
for n=1:No_MNO
sum_n[n,:]=sum(lamb_u_f[index[n]:index[n]+N_UE_s[n]-1,:],1)
constant_hf[n,:]=sum_n[n,:] /lamb_n[n]*S
end
w_lamb_hit_u=zeros(N_UE,1)
for i=1:N_UE
if i<21
m=1
elseif i<40
m=2
elseif i<59
m=3
elseif i<77
m=4
elseif i<97
m=5
elseif i<115
m=6
else
m=7
end
w_lamb_hit_u[i]= sum(sum_n[m,:].*constant_hf[m,:],2)[1]
end
w_mu_u = C_u/L
w_ulti = zeros(No_MNO)
w_lamb_hit_n = zeros(No_MNO)
w_ulti_u = w_lamb_hit_u./w_mu_u
for n=1:No_MNO
w_ulti[n] = sum(w_ulti_u[index[n]:index[n]+N_UE_s[n]-1])
w_lamb_hit_n[n] = sum(w_lamb_hit_u[index[n]:index[n]+N_UE_s[n]-1])
end
# println(w_ulti)
# # println(w_lamb_hit_u)
# println(w_lamb_hit_n)