-
Notifications
You must be signed in to change notification settings - Fork 139
/
Copy pathneuralnetwork.lua
182 lines (163 loc) · 6.04 KB
/
neuralnetwork.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
require 'dp'
--[[command line arguments]]--
cmd = torch.CmdLine()
cmd:text()
cmd:text('Image Classification using MLP Training/Optimization')
cmd:text('Example:')
cmd:text('$> th neuralnetwork.lua --batchSize 128 --momentum 0.5')
cmd:text('Options:')
cmd:option('--learningRate', 0.1, 'learning rate at t=0')
cmd:option('--lrDecay', 'linear', 'type of learning rate decay : adaptive | linear | schedule | none')
cmd:option('--minLR', 0.00001, 'minimum learning rate')
cmd:option('--saturateEpoch', 300, 'epoch at which linear decayed LR will reach minLR')
cmd:option('--schedule', '{}', 'learning rate schedule')
cmd:option('--maxWait', 4, 'maximum number of epochs to wait for a new minima to be found. After that, the learning rate is decayed by decayFactor.')
cmd:option('--decayFactor', 0.001, 'factor by which learning rate is decayed for adaptive decay.')
cmd:option('--maxOutNorm', 1, 'max norm each layers output neuron weights')
cmd:option('--momentum', 0, 'momentum')
cmd:option('--activation', 'Tanh', 'transfer function like ReLU, Tanh, Sigmoid')
cmd:option('--hiddenSize', '{200,200}', 'number of hidden units per layer')
cmd:option('--batchSize', 32, 'number of examples per batch')
cmd:option('--cuda', false, 'use CUDA')
cmd:option('--useDevice', 1, 'sets the device (GPU) to use')
cmd:option('--maxEpoch', 100, 'maximum number of epochs to run')
cmd:option('--maxTries', 30, 'maximum number of epochs to try to find a better local minima for early-stopping')
cmd:option('--dropout', false, 'apply dropout on hidden neurons')
cmd:option('--batchNorm', false, 'use batch normalization. dropout is mostly redundant with this')
cmd:option('--dataset', 'Mnist', 'which dataset to use : Mnist | NotMnist | Cifar10 | Cifar100')
cmd:option('--standardize', false, 'apply Standardize preprocessing')
cmd:option('--zca', false, 'apply Zero-Component Analysis whitening')
cmd:option('--lecunlcn', false, 'apply Yann LeCun Local Contrast Normalization')
cmd:option('--progress', false, 'display progress bar')
cmd:option('--silent', false, 'dont print anything to stdout')
cmd:text()
opt = cmd:parse(arg or {})
opt.schedule = dp.returnString(opt.schedule)
opt.hiddenSize = dp.returnString(opt.hiddenSize)
if not opt.silent then
table.print(opt)
end
--[[preprocessing]]--
local input_preprocess = {}
if opt.standardize then
table.insert(input_preprocess, dp.Standardize())
end
if opt.zca then
table.insert(input_preprocess, dp.ZCA())
end
if opt.lecunlcn then
table.insert(input_preprocess, dp.GCN())
table.insert(input_preprocess, dp.LeCunLCN{progress=true})
end
--[[data]]--
if opt.dataset == 'Mnist' then
ds = dp.Mnist{input_preprocess = input_preprocess}
elseif opt.dataset == 'NotMnist' then
ds = dp.NotMnist{input_preprocess = input_preprocess}
elseif opt.dataset == 'Cifar10' then
ds = dp.Cifar10{input_preprocess = input_preprocess}
elseif opt.dataset == 'Cifar100' then
ds = dp.Cifar100{input_preprocess = input_preprocess}
elseif opt.dataset == 'FaceDetection' then
ds = dp.FaceDetection{input_preprocess = input_preprocess}
else
error("Unknown Dataset")
end
--[[Model]]--
model = nn.Sequential()
model:add(nn.Convert(ds:ioShapes(), 'bf')) -- to batchSize x nFeature (also type converts)
-- hidden layers
inputSize = ds:featureSize()
for i,hiddenSize in ipairs(opt.hiddenSize) do
model:add(nn.Linear(inputSize, hiddenSize)) -- parameters
if opt.batchNorm then
model:add(nn.BatchNormalization(hiddenSize))
end
model:add(nn[opt.activation]())
if opt.dropout then
model:add(nn.Dropout())
end
inputSize = hiddenSize
end
-- output layer
model:add(nn.Linear(inputSize, #(ds:classes())))
model:add(nn.LogSoftMax())
--[[Propagators]]--
if opt.lrDecay == 'adaptive' then
ad = dp.AdaptiveDecay{max_wait = opt.maxWait, decay_factor=opt.decayFactor}
elseif opt.lrDecay == 'linear' then
opt.decayFactor = (opt.minLR - opt.learningRate)/opt.saturateEpoch
end
train = dp.Optimizer{
acc_update = opt.accUpdate,
loss = nn.ModuleCriterion(nn.ClassNLLCriterion(), nil, nn.Convert()),
epoch_callback = function(model, report) -- called every epoch
-- learning rate decay
if report.epoch > 0 then
if opt.lrDecay == 'adaptive' then
opt.learningRate = opt.learningRate*ad.decay
ad.decay = 1
elseif opt.lrDecay == 'schedule' and opt.schedule[report.epoch] then
opt.learningRate = opt.schedule[report.epoch]
elseif opt.lrDecay == 'linear' then
opt.learningRate = opt.learningRate + opt.decayFactor
end
opt.learningRate = math.max(opt.minLR, opt.learningRate)
if not opt.silent then
print("learningRate", opt.learningRate)
end
end
end,
callback = function(model, report) -- called for every batch
if opt.accUpdate then
model:accUpdateGradParameters(model.dpnn_input, model.output, opt.learningRate)
else
model:updateGradParameters(opt.momentum) -- affects gradParams
model:updateParameters(opt.learningRate) -- affects params
end
model:maxParamNorm(opt.maxOutNorm) -- affects params
model:zeroGradParameters() -- affects gradParams
end,
feedback = dp.Confusion(),
sampler = dp.ShuffleSampler{batch_size = opt.batchSize},
progress = opt.progress
}
valid = dp.Evaluator{
feedback = dp.Confusion(),
sampler = dp.Sampler{batch_size = opt.batchSize}
}
test = dp.Evaluator{
feedback = dp.Confusion(),
sampler = dp.Sampler{batch_size = opt.batchSize}
}
--[[Experiment]]--
xp = dp.Experiment{
model = model,
optimizer = train,
validator = valid,
tester = test,
observer = {
dp.FileLogger(),
dp.EarlyStopper{
error_report = {'validator','feedback','confusion','accuracy'},
maximize = true,
max_epochs = opt.maxTries
},
ad
},
random_seed = os.time(),
max_epoch = opt.maxEpoch
}
--[[GPU or CPU]]--
if opt.cuda then
require 'cutorch'
require 'cunn'
cutorch.setDevice(opt.useDevice)
xp:cuda()
end
xp:verbose(not opt.silent)
if not opt.silent then
print"Model :"
print(model)
end
xp:run(ds)