#101. Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For example, this binary tree is symmetric:
1
/
2 2
/ \ /
3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
思路:递归思路,左节点和右节点的数值相同。
Java Solution(Recurive)
public class Solution {
public boolean isSymmetric(TreeNode root) {
if(root==null) return true;
return isSymmetric(root.left,root.right);
}
public boolean isSymmetric(TreeNode l,TreeNode r){
if(l==null&&r==null) return true;
if((l!=null&&r==null)||(l==null&&r!=null))return false;
if(l.val!=r.val)return false;
return (l.val==r.val)&&isSymmetric(l.left,r.right)&&isSymmetric(l.right,r.left);
}
}
Java Solution(Iterative)
public class Solution {
public boolean isSymmetric(TreeNode root) {
if(root==null) return true;
Queue<TreeNode> q1 = new LinkedList<TreeNode>(),q2 = new LinkedList<TreeNode>();
q1.add(root.left);
q2.add(root.right);
while(!q1.isEmpty&&!q2.isEmpty){
if(q1.size!=q2.size) return false;
for(int i=0;i<q1.size;i++){
TreeNode t1 = q1.remove();
TreeNode t2 = q2.remove();
if(t1==null&&t2==null) continue;
if(t1!=null||t2!=null) return false;
if(t1.val!=t2.val) return false;
q1.add(t1.left);
q1.add(t1.right);
q2.add(t2.right);
q2.add(t2.left);
}
}
return q1.isEmpty()&&q2.isEmpty();
}
}