forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
202 lines (177 loc) · 6.73 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import time
import logging
import argparse
import ast
import numpy as np
try:
import cPickle as pickle
except:
import pickle
import paddle.fluid as fluid
from utils.config_utils import *
import models
from reader import get_reader
from metrics import get_metrics
from utils.utility import check_cuda
from utils.utility import check_version
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.DEBUG, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
type=str,
default='AttentionCluster',
help='name of model to train.')
parser.add_argument(
'--config',
type=str,
default='configs/attention_cluster.txt',
help='path to config file of model')
parser.add_argument(
'--use_gpu',
type=ast.literal_eval,
default=True,
help='default use gpu.')
parser.add_argument(
'--weights',
type=str,
default=None,
help='weight path, None to automatically download weights provided by Paddle.'
)
parser.add_argument(
'--batch_size',
type=int,
default=1,
help='sample number in a batch for inference.')
parser.add_argument(
'--filelist',
type=str,
default=None,
help='path to inferenece data file lists file.')
parser.add_argument(
'--log_interval',
type=int,
default=1,
help='mini-batch interval to log.')
parser.add_argument(
'--infer_topk',
type=int,
default=20,
help='topk predictions to restore.')
parser.add_argument(
'--save_dir',
type=str,
default=os.path.join('data', 'predict_results'),
help='directory to store results')
parser.add_argument(
'--video_path',
type=str,
default=None,
help='directory to store results')
args = parser.parse_args()
return args
def infer(args):
# parse config
config = parse_config(args.config)
infer_config = merge_configs(config, 'infer', vars(args))
print_configs(infer_config, "Infer")
infer_model = models.get_model(args.model_name, infer_config, mode='infer')
infer_model.build_input(use_dataloader=False)
infer_model.build_model()
infer_feeds = infer_model.feeds()
infer_outputs = infer_model.outputs()
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
filelist = args.filelist or infer_config.INFER.filelist
filepath = args.video_path or infer_config.INFER.get('filepath', '')
if filepath != '':
assert os.path.exists(filepath), "{} not exist.".format(filepath)
else:
assert os.path.exists(filelist), "{} not exist.".format(filelist)
# get infer reader
infer_reader = get_reader(args.model_name.upper(), 'infer', infer_config)
if args.weights:
assert os.path.exists(
args.weights), "Given weight dir {} not exist.".format(args.weights)
# if no weight files specified, download weights from paddle
weights = args.weights or infer_model.get_weights()
infer_model.load_test_weights(exe, weights,
fluid.default_main_program(), place)
infer_feeder = fluid.DataFeeder(place=place, feed_list=infer_feeds)
fetch_list = infer_model.fetches()
infer_metrics = get_metrics(args.model_name.upper(), 'infer', infer_config)
infer_metrics.reset()
periods = []
cur_time = time.time()
for infer_iter, data in enumerate(infer_reader()):
if args.model_name == 'ETS':
data_feed_in = [items[:3] for items in data]
vinfo = [items[3:] for items in data]
video_id = [items[0] for items in vinfo]
infer_outs = exe.run(fetch_list=fetch_list,
feed=infer_feeder.feed(data_feed_in),
return_numpy=False)
infer_result_list = infer_outs + [vinfo]
elif args.model_name == 'TALL':
data_feed_in = [items[:2] for items in data]
vinfo = [items[2:] for items in data]
video_id = [items[6] for items in vinfo]
infer_outs = exe.run(fetch_list=fetch_list,
feed=infer_feeder.feed(data_feed_in),
return_numpy=True)
infer_result_list = infer_outs + [vinfo]
elif args.model_name == 'BsnPem':
data_feed_in = [items[:1] for items in data]
vinfo = [items[1:] for items in data]
video_id = [items[2] for items in data]
infer_outs = exe.run(fetch_list=fetch_list,
feed=infer_feeder.feed(data_feed_in),
return_numpy=False)
infer_result_list = infer_outs + [vinfo]
else:
data_feed_in = [items[:-1] for items in data]
video_id = [items[-1] for items in data]
infer_outs = exe.run(fetch_list=fetch_list,
feed=infer_feeder.feed(data_feed_in))
infer_result_list = [item for item in infer_outs] + [video_id]
prev_time = cur_time
cur_time = time.time()
period = cur_time - prev_time
periods.append(period)
infer_metrics.accumulate(infer_result_list)
if args.log_interval > 0 and infer_iter % args.log_interval == 0:
logger.info('Processed {} samples'.format((infer_iter + 1) * len(
video_id)))
logger.info('[INFER] infer finished. average time: {}'.format(
np.mean(periods)))
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
infer_metrics.finalize_and_log_out(savedir=args.save_dir)
if __name__ == "__main__":
import paddle
paddle.enable_static()
args = parse_args()
# check whether the installed paddle is compiled with GPU
check_cuda(args.use_gpu)
check_version()
logger.info(args)
infer(args)