Skip to content

Latest commit

 

History

History
56 lines (44 loc) · 1.78 KB

DOC_FLANT5_PROMPT_FT.md

File metadata and controls

56 lines (44 loc) · 1.78 KB

Flan-T5 fine-tuning findings on RuSentNE-2023

We use the following prompt message:

What's the attitude of the sentence '{context}' to the target '{target}'? Select one from: positive, negative, neutral.

Setup: Flan-T5-base, output up to 300 tokens, 12 epochs, 16-batch size. NVidia-V100, ~1.5 min/epoch

Implementation: engine_prompt.py

Result: F1_PN = 57.01

Setup: Flan-T5-large output up to 300 tokens, 10 epochs. 9'th is the best. 16-batch size. NVidia-A100, ~1.5 min/epoch

Implementation: engine_prompt.py

Result: F1_PN = 60.796

     F1_PN  F1_PN0  default   mode
0   62.009  70.023   70.023  valid
1   64.580  72.050   72.050  valid
2   65.444  73.350   73.350  valid
3   64.866  72.894   72.894  valid
4   65.378  73.474   73.474  valid
5   65.145  73.261   73.261  valid
6   65.321  73.363   73.363  valid
7   64.909  72.898   72.898  valid
8   65.175  73.009   73.009  valid
9   65.831  73.706   73.706  valid
10  60.796  69.792   69.792   test
11  60.796  69.792   69.792   test

Setup: Flan-T5-xl trained for 4 epochs. Model has not been even overfitted after 4 epochs! This is the state-of-the-art of the prompt tuning Trained with the new version of the project:

Command for reproduction:

python main.py -r prompt -d rusentne2023 -bs 4 -es 4 -bf16 -p "What's the attitude of the sentence '{context}', to the target '{target}'?"

Checkpoint: 🤗 nicolay-r/flan-t5-tsa-prompt-large

Result: F1_PN = 68.197

   F1_PN  F1_PN0  default   mode
0  63.254  71.802   71.802  valid
1  67.996  75.173   75.173  valid
2  68.182  75.240   75.240  valid
3  68.624  75.678   75.678  valid
4  68.197  75.290   75.290   test
5  68.197  75.290   75.290   test