-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevolution.py
75 lines (59 loc) · 2.43 KB
/
evolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import neat
import datetime
import random
import visualize
import environment
generations = 100
seed = 183
random.seed(seed)
env = environment.Environment(seed)
def run(config_file):
# Load configuration.
config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,
neat.DefaultSpeciesSet, neat.DefaultStagnation,
config_file)
config.pop_size = env.pop_size
# Create the population, which is the top-level object for a NEAT run.
p = neat.Population(config)
# Add a stdout reporter to show progress in the terminal.
p.add_reporter(neat.StdOutReporter(True))
stats = neat.StatisticsReporter()
p.add_reporter(stats)
# Run for up to n generations.
winner = p.run(env.evaluate_genomes, generations)
node_names = {
-1: "constant",
-2: "vision 0",
-3: "vision 1",
-4: "vision 2",
-5: "vision 3",
-6: "vision 4",
0: "out speed",
1: "turn",
}
now = datetime.datetime.now()
datestr = "%s%s%s_%s%s" % (now.year, now.month, now.day, now.hour, now.minute)
os.mkdir("results/" + datestr)
visualize.plot_stats(stats, ylog=False, view=True, filename=("results/" + datestr + "/avg_fitness_" + datestr + ".svg"))
visualize.plot_species(stats, view=True, filename=("results/" + datestr + "/speciation_" + datestr + ".svg"))
visualize.draw_net(config, winner, view=True, node_names=node_names, filename=("results/" + datestr +"/neural_net_" + datestr), fmt="png")
# Find winner of last 10% of generations
last_winners = stats.most_fit_genomes[-int((generations/10)):]
last_winner = None
max_fitness = 0
for g in last_winners:
if g.fitness > max_fitness:
max_fitness = g.fitness
last_winner = g
visualize.draw_net(config, last_winner, view=True, node_names=node_names, filename=("results/" + datestr +"/last_neural_net_" + datestr), fmt="png")
# Display the winning genome.
print('\nBest genome:\n{!s}'.format(winner))
if __name__ == '__main__':
# visualize.draw_from_file('results/20221125_1133/avg_fitness_20221125_1133.svg.data')
# Determine path to configuration file. This path manipulation is
# here so that the script will run successfully regardless of the
# current working directory.
local_dir = os.path.dirname(__file__)
config_path = os.path.join(local_dir, 'config')
run(config_path)