-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpikmin_webscraping.py
582 lines (435 loc) · 18.4 KB
/
pikmin_webscraping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# %% [markdown]
# # Pikmin
#
# __Project Overview__
#
# Goal: Determine 'best' pikmin based on three metrics
# - Cultural impact of pikmin
# - Via # of Reddit posts on r/Pikmin and r/PikminBloomApp
# - Public outlook on pikmin
# - Via average # of upvotes on Reddit posts
# - Via NLP processing of comments on these posts determining 'positive' feedback
# - Viability of pikmin in game
# - Via stats from Pikmin 4 via Pikipedia
#
# Secondary goal: Determine which pikmin each of my friends is most like
# - From MBTI (self reported from friends)
# - Scrape 16personalities for top traits of each personality
# - Generate similarity score between traits of personality and adjectives from Reddit comments
#
# %% [markdown]
# __Reddit API use with PRAW__
# %%
# libraries
import requests
import praw
import pandas as pd
import re
import matplotlib.pyplot as plt
from collections import Counter
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
import bs4
import statistics
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# nltk.download('vader_lexicon')
# %%
reddit = praw.Reddit(
client_id='client_id',
client_secret='client_secret',
user_agent='pikmin'
) # please get your own key
# %%
pikmin = reddit.subreddit('pikmin')
pikmin_bloom = reddit.subreddit('pikminbloomapp')
r_all = reddit.subreddit('all')
print(pikmin.title)
# %%
pikmin_colors = ["red", "yellow", "blue", "pink", "rock", "white", "ice", "purple"]
posts_df = pd.DataFrame()
titles = []
scores = []
ids = []
colors = []
for submission in pikmin.top(limit=None):
title = str(submission.title)
title = ''.join(re.findall(r'[a-zA-Z ]', title))
title_split = title.split(' ')
for color in pikmin_colors:
for word in title_split:
if color == word:
titles.append(submission.title)
scores.append(submission.score)
ids.append(submission.id)
colors.append(color)
break
for submission in pikmin_bloom.top(limit=None):
title = str(submission.title)
title = ''.join(re.findall(r'[a-zA-Z ]', title))
title_split = title.split(' ')
for color in pikmin_colors:
for word in title_split:
if color == word:
titles.append(submission.title)
scores.append(submission.score)
ids.append(submission.id)
colors.append(color)
break
posts_df['title'] = titles
posts_df['id'] = ids
posts_df['score'] = scores
posts_df['color'] = colors
print(posts_df.shape)
posts_df.head()
# %%
counter_dict = Counter(list(posts_df['color']))
counter_dict = dict(sorted(counter_dict.items(), key=lambda item: item[1], reverse=True))
colors = list(counter_dict.keys())
frequencies = list(counter_dict.values())
plt.grid(True, axis='y', linestyle = '--', alpha = 0.4)
plt.bar(colors, frequencies, color = ['cornflowerblue', 'lightgray', 'plum', 'gold', 'gray', 'lightcoral', 'lightblue', 'pink'], edgecolor='darkslategray')
plt.xlabel('pikmin color')
plt.ylabel('number of posts')
plt.title('posts per pikmin color')
plt.show()
# %%
mean_score_by_color = posts_df.groupby('color')['score'].mean()
df_list = []
for color in pikmin_colors:
df = posts_df['score'][posts_df['color']==color]
df_list.append(df)
colors = ['lightcoral', 'gold', 'cornflowerblue', 'pink', 'gray', 'lightgray', 'lightblue', 'plum']
box = plt.boxplot(df_list, tick_labels = pikmin_colors, patch_artist = True)
plt.grid(True, axis='y', linestyle = '--', alpha = 0.4)
for patch, color in zip(box['boxes'], colors):
patch.set_facecolor(color)
patch.set_edgecolor('darkslategray')
patch.set_linewidth(1.5)
plt.xlabel('pikmin color')
plt.ylabel('upvotes')
plt.title('post performance by pikmin color')
plt.show()
# %%
def analyze_sentiment(text):
sia = SentimentIntensityAnalyzer()
sentiment_scores = sia.polarity_scores(text)
compound_score = sentiment_scores['compound']
if compound_score >= 0.05:
return "Positive"
elif compound_score <= -0.05:
return "Negative"
else:
return "Neutral"
df_list = []
for color in pikmin_colors:
df = posts_df[posts_df['color']==color]
df_list.append(df)
colors = []
sentiments = []
for color_df in df_list:
color = list(color_df['color'])[0]
for url in list(color_df['id']):
submission = reddit.submission(url)
for comment in submission.comments:
body = str(comment.body)
sentiment = analyze_sentiment(body)
colors.append(color)
sentiments.append(sentiment)
sentiment_df = pd.DataFrame({
'color': colors,
'sentiment': sentiments
})
print(sentiment_df.shape)
sentiment_df.head()
# %%
sentiment_counts = sentiment_df.groupby(['color', 'sentiment']).size().unstack(fill_value=0)
sentiment_percentages = sentiment_counts.div(sentiment_counts.sum(axis=1), axis=0) * 100
ax = sentiment_percentages.plot(kind='bar', stacked=True, color=['firebrick', 'darkgray', 'green'])
plt.xlabel('pikmin color')
plt.ylabel('percentage')
plt.title('sentiment distribution per pikmin color')
plt.show()
# %%
sentiment_percentages.head()
# %% [markdown]
# __Pikipedia Scraping__
# %%
pikmin_urls = ['Red_Pikmin', 'Yellow_Pikmin', 'Blue_Pikmin', 'Purple_Pikmin', 'White_Pikmin', 'Rock_Pikmin', 'Winged_Pikmin', 'Ice_Pikmin']
pikmin_stats = pd.DataFrame({
'color': [],
'atk_strength': [],
'carry_strength': [],
'run_speed': [],
'dig_speed': []
})
for url in pikmin_urls:
full_url = 'https://www.pikminwiki.com/' + url
response = requests.get(full_url)
clean_response = bs4.BeautifulSoup(response.text, 'html.parser')
tables = clean_response.find_all('table')
technical_tables = [table for table in tables if 'technicaltable' in str(table) and '/Pikmin_4' in str(table)]
pikmin4_table = bs4.BeautifulSoup(str(technical_tables[0]), 'html.parser')
data = [url]
table_rows = pikmin4_table.find_all('tr')
for row in table_rows:
for cell in row.find_all('td'):
text = cell.text
num_only = re.sub(r'[^0-9,.]', '', text)
values = num_only.split(',')
i = 0
for value in values:
try: float(value)
except: fl_value = 0
else: fl_value = float(value)
values[i] = fl_value
i += 1
mean_stat = statistics.mean(values)
data.append(mean_stat)
pikmin_stats.loc[len(pikmin_stats)] = data
print(pikmin_stats)
# %%
# since rock pikmin atk strength is listed as 'depends' we will calculate it based on a ratio between its pikmin bloom attack strength and purple/blue pikmin's attack strength (average of both)
# x/5 = 15/6 and x/5 = 10/3
rock_pikmin_strength = round((((5*15)/6) + ((5*10)/3))/2,1)
pikmin_stats.at[5, 'atk_strength'] = rock_pikmin_strength
print(pikmin_stats)
# %%
columns = ['atk_strength', 'carry_strength', 'run_speed', 'dig_speed']
pikmin_stats_standard = pd.DataFrame({
'color': list(pikmin_stats['color'])
})
for col in columns:
cur_list = list(pikmin_stats[col])
max_value = max(cur_list)
new_list = []
for item in cur_list:
new_item = (item / max_value) * 10
new_list.append(new_item)
pikmin_stats_standard[col] = new_list
print(pikmin_stats_standard)
# %%
print(pikmin_stats_standard.iloc[0].tolist())
# %%
data = [
pikmin_stats_standard.iloc[0].tolist(),
pikmin_stats_standard.iloc[1].tolist(),
pikmin_stats_standard.iloc[2].tolist(),
pikmin_stats_standard.iloc[3].tolist(),
pikmin_stats_standard.iloc[4].tolist(),
pikmin_stats_standard.iloc[5].tolist(),
pikmin_stats_standard.iloc[6].tolist(),
pikmin_stats_standard.iloc[7].tolist()
]
num_vars = len(data[0]) - 1
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
angles += angles[:1]
fig, axs = plt.subplots(2, 4, figsize=(15, 10), subplot_kw=dict(polar=True))
colors = ['lightcoral', 'gold', 'cornflowerblue', 'plum', 'lightgray', 'gray', 'pink', 'lightblue']
for i, (name, stat1, stat2, stat3, stat4) in enumerate(data):
stats = [stat1, stat2, stat3, stat4]
stats += stats[:1]
ax = axs[i // 4, i % 4]
ax.plot(angles, stats, linewidth=2, linestyle='solid')
ax.fill(angles, stats, alpha=0.4, color=colors[i], edgecolor='darkslategray')
ax.set_yticklabels([])
ax.set_xticks(angles[:-1])
ax.set_xticklabels(['atk', 'carry', 'run', 'dig'], fontsize=10)
ax.set_title(name, size=12)
ax.set_ylim(0, 10)
plt.tight_layout()
plt.show()
# %% [markdown]
# __Calculating a score for each Pikmin (Standardization)__
#
# In each metric, pikmin will be given a score out of 10 that will be 10 = the highest score in that metric, and every other score scaled to that
#
# Then each category will sum each metric and take the results / 10
#
# Then each category will be summed and the final score for each pikmin will be out of 10 (/3)
# %%
# Cultural impact: # of Reddit posts
pik_colors = list(counter_dict.keys())
num_posts = list(counter_dict.values())
max_val = max(num_posts)
num_posts_std = []
for num in num_posts:
new_num = (num / max_val) * 10
num_posts_std.append(new_num)
pikmin_scores_df = pd.DataFrame({
'color': pik_colors,
'cultural_impact': num_posts_std
})
print(pikmin_scores_df)
# %%
# Public outlook: Reddit karma and comment sentiment
# karma
scores = list(mean_score_by_color)
colos = ['blue', 'ice', 'pink', 'purple', 'red', 'rock', 'white', 'yellow']
max_val = max(scores)
new_vals = []
for val in scores:
new_val = (val/max_val) * 10
new_vals.append(new_val)
karma_df = pd.DataFrame({
'color': colos,
'karma': new_vals
})
# sentiment
colos2 = ['blue', 'ice', 'pink', 'purple', 'red', 'rock', 'white', 'yellow']
pos = list(sentiment_percentages['Positive'])
max_val = max(pos)
new_vals = []
for val in pos:
new_val = (val/max_val) * 10
new_vals.append(new_val)
pos_sent_df = pd.DataFrame({
'color': colos,
'positive': new_vals
})
full_outlook_df = pd.merge(karma_df, pos_sent_df, how='left', on='color')
colos2 = ['blue', 'ice', 'pink', 'purple', 'red', 'rock', 'white', 'yellow']
karma = list(full_outlook_df['karma'])
pos = list(full_outlook_df['positive'])
vals = []
i = 0
for k in karma:
p = pos[i]
val = (k + p) / 2
vals.append(val)
i += 1
outlook_df = pd.DataFrame({
'color': colos2,
'public_outlook': vals
})
print(outlook_df)
# %%
# Viability: Pikipedia stats
pikmin_stats_standard
colos3 = ['red', 'yellow', 'blue', 'purple', 'white', 'rock', 'pink', 'ice']
atk = list(pikmin_stats_standard['atk_strength'])
carry = list(pikmin_stats_standard['carry_strength'])
run = list(pikmin_stats_standard['run_speed'])
dig = list(pikmin_stats_standard['dig_speed'])
stat_vals = []
i = 0
for a in atk:
c = carry[i]
r = run[i]
d = dig[i]
new_val = (a + c + r + d) / 4
stat_vals.append(new_val)
i += 1
viability_df = pd.DataFrame({
'color': colos3,
'viability': stat_vals
})
viability_df
# %%
pikmin_scores_df
# %%
pikmin_scores_df = pd.merge(pikmin_scores_df, outlook_df, on='color', how='left')
pikmin_scores_df = pd.merge(pikmin_scores_df, viability_df, on='color', how='left')
cult = list(pikmin_scores_df['cultural_impact'])
pub = list(pikmin_scores_df['public_outlook'])
via = list(pikmin_scores_df['viability'])
overall = []
i = 0
for c in cult:
p = pub[i]
v = via[i]
new_val = (c + p + v) / 3
overall.append(new_val)
i += 1
pikmin_scores_df['overall'] = overall
pikmin_scores_df
# %% [markdown]
# __Pikmin personalities__
#
# https://www.yayomg.com/what-your-favorite-pikmin-says-about-you/
# %%
red_type = '''Fiery and fierce, you’re just like a Red Pikmin! Your friends can count on you to step up – and deliver!
Always ready to lead the pack, your independent spirit and logical mindset fuel your ability to take charge. Whether you’re slaying a group project, leading your sports team to victory, or organizing an epic end-of-summer bash, you’re always fired up when an opportunity to lead comes your way.'''
blue_type = '''Easygoing. Laid back. Totally cool. Ring a bell? If Blue Pikmin are your fav, you’re probably the chill one in your squad, keeping things going swimmingly in the group chat with your quick wit and endless jokes that just hit different.
When plans change, you don’t get caught up in the details – you go with the flow. On land, in water, or in the school caf, your flexible nature comes in handy, helping you to adapt to any situation or pick up new skills like it’s no big thing. Your chill vibes are what draws people to your side, but it’s your personality that really makes a splash!
'''
yellow_type = '''Shockingly great describes Yellow Pikmin, and it describes you, too!
Adventurous and curious, you’re always down to try new things. Something tells us you’re the fun one in your squad, bringing high energy to every activity and ever-ready to seek out a new adventure. Whether it be thrill-seeking jaunts, like riding a coaster with a massive drop or simply convincing your bestie to break out of their comfort zone and try a new restaurant in the next town over, your curiosity electrifies your soul and makes life interesting!
'''
ice_type = '''New to the pack, these chilly Pikmin are already proving they’re as dependable as the OGs. So how are you like these icy creatures? You’re always there when you say you will be – sitting front row at your bestie’s acting debut in the school musical, dropping everything to craft a pick-me-up for a friend who’s going through it, or sacrificing weekend fun to help mom re-paint the living room – you name it.
You can always sense what really matters to the people around you and prioritize their needs, and it’s the coolest thing about you!'''
purple_type = '''Strong, yet fabulous. If this sounds like you, then it’s the Purple Pikmin you relate to most, for sure. These grape-colored creatures are as tough as you are confident!
Big test? Team captain? Karaoke night? You’re not nervous at all, in fact, you thrive in any situation where you can give it your all and do your best. Handling pressure comes naturally to you, and you’re always stunning others with your ability to shake off everything from a bad day to a bad mood with ease.'''
rock_type = '''Always ready to stand up for what you believe in, there’s no surprise the Rock Pikmin is your fav. They’re sturdy and unbreakable, just like your plucky, Pikmin-like spirit! You have a tendency to jump in and speak your mind, especially when your core beliefs are being challenged.
You might have a tough exterior and a tenacious never-back-down attitude, but you’re a rock-solid friend who’ll do anything for the people you care about.'''
pink_type = '''Soaring above it all, Winged Pikmin don’t get bogged down in the details, and neither do you. You’re a team player to your core, eager to help anyone who needs it. Determined to do it all, you feel like you’re flying when you spot an opportunity to swoop in and help out, and like a Pikmin, you know there’s you’re stronger when everyone works together.
Far from having your head in the clouds, you’re reaching for the sky with your lofty goals and unstoppable ambition. Don’t worry, we know you’ll land amongst the stars!'''
white_type = '''White Pikmin are poisonous, so if you’re feeling a little rough around the edges lately, these small but mighty creatures can totally relate. Just because you’re going through it doesn’t mean you can’t handle it. In fact, you’re more courageous than you think!
These Pikmin can handle toxic environments better than most – and so can you! Navigating everything from bad days to friend fights seems to be your strong suit. You’re introspective and in tune with your feelings, and we’re betting you give seriously great advice.'''
pikmin_types = [red_type, blue_type, yellow_type, ice_type, purple_type, rock_type, pink_type, white_type]
# %% [markdown]
# __MBTI 16personalities scraping__
# %%
personalities = ['intj', 'intp', 'entj', 'entp', 'infp', 'infj', 'enfj', 'enfp', 'istj', 'isfj', 'estj', 'esfj', 'istp', 'isfp', 'estp', 'esfp']
mbti_df = pd.DataFrame({
'personality': [],
'red': [],
'blue': [],
'yellow': [],
'ice': [],
'purple': [],
'rock': [],
'pink': [],
'white': []
})
for perso in personalities:
data = [perso]
url = 'https://www.16personalities.com/' + perso + '-personality'
response = requests.get(url)
clean_response = bs4.BeautifulSoup(response.text, 'html.parser')
p = clean_response.find_all('p')
blurb = str(p[5].text)
vectorizer = TfidfVectorizer(stop_words='english')
for pik in pikmin_types:
tfidf_matrix = vectorizer.fit_transform([pik, blurb])
cosine_sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
data.append(float(cosine_sim[0][0]))
mbti_df.loc[len(mbti_df)] = data
mbti_df
# %%
for col in mbti_df.columns[1:]:
col_list = list(mbti_df[col])
mbti_list = list(mbti_df['personality'])
mean = statistics.mean(col_list)
col_list_sorted = sorted(col_list, reverse=True)
pers_list = []
for num in col_list_sorted:
i = col_list.index(num)
pers = mbti_list[i]
pers_list.append(pers)
print(col, ':', mean, pers_list)
# %%
colors = ['red', 'blue', 'yellow', 'ice', 'purple', 'rock', 'pink', 'white']
matching_df = pd.DataFrame({
'mbti': [],
'score': [],
'color': []
})
for i in range(len(mbti_df)):
data = []
row = list(mbti_df.loc[i])
data.append(row[0])
j = 1
highest_score = 0
best_color = 'none'
for col in colors:
score = row[j]
if score > highest_score:
highest_score = score
best_color = col
j += 1
data.append(highest_score)
data.append(best_color)
matching_df.loc[len(matching_df)] = data
matching_df