-
Notifications
You must be signed in to change notification settings - Fork 17
/
hparams.py
100 lines (85 loc) · 2.5 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# ==============================================================================
# Copyright (c) 2018, Yamagishi Laboratory, National Institute of Informatics
# Author: Yusuke Yasuda (yasuda@nii.ac.jp)
# All rights reserved.
# ==============================================================================
""" Hyperparameters. """
import tensorflow as tf
hparams = tf.contrib.training.HParams(
# Audio
num_mels=80,
num_freq=1025,
sample_rate=20000,
frame_length_ms=50,
frame_shift_ms=12.5,
min_level_db=-100,
ref_level_db=20,
# Dataset
num_symbols=256,
convert_to_upper=True,
# Model:
outputs_per_step=2,
n_feed_frame=2,
## Embedding
embedding_dim=256,
## Encoder V1
encoder_prenet_drop_rate=0.5,
cbhg_out_units=256,
conv_channels=128,
max_filter_width=16,
projection1_out_channels=128,
projection2_out_channels=128,
num_highway=4,
encoder_prenet_out_units=(256, 128),
## Decoder V1
decoder_prenet_drop_rate=0.5,
decoder_prenet_out_units=(256, 128),
attention_out_units=256,
decoder_out_units=256,
# Decoder V2
attention_kernel=31,
attention_filters=32,
cumulative_weights=True,
## Post net
post_net_cbhg_out_units=256,
post_net_conv_channels=128,
post_net_max_filter_width=8,
post_net_projection1_out_channels=256,
post_net_projection2_out_channels=80,
post_net_num_highway=4,
# Training:
batch_size=32,
adam_beta1=0.9,
adam_beta2=0.999,
adam_eps=1e-8,
initial_learning_rate=0.002,
decay_learning_rate=True,
save_summary_steps=100,
log_step_count_steps=1,
save_training_time_metrics=True,
alignment_save_steps=10000,
approx_min_target_length=100,
suffle_buffer_size=64,
batch_bucket_width=50,
batch_num_buckets=50,
interleave_cycle_length_cpu_factor=1.0,
interleave_cycle_length_min=4,
interleave_cycle_length_max=16,
interleave_buffer_output_elements=200,
interleave_prefetch_input_elements=200,
prefetch_buffer_size=4,
record_profile=False,
profile_steps=50,
# Eval:
max_iters=500,
griffin_lim_iters=60,
power=1.5, # Power to raise magnitudes to prior to Griffin-Lim
num_evaluation_steps=32,
keep_eval_results_max_epoch=10,
eval_start_delay_secs=1800,
eval_throttle_secs=4000,
)
def hparams_debug_string():
values = hparams.values()
hp = [' %s: %s' % (name, values[name]) for name in sorted(values)]
return 'Hyperparameters:\n' + '\n'.join(hp)