-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschemer.scm
926 lines (773 loc) · 22.3 KB
/
schemer.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
#lang scheme
(provide (all-defined-out))
; atom? is not defined in most schemes because why?
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
; is every sexp in list an atom?
(define lat?
(lambda (l)
(cond
((null? l) #t)
((atom? (car l)) (lat? (cdr l)))
(else #f))))
; is atom in list?
(define member?
(lambda (a lat)
(cond
((null? lat) #f)
(else (or (eq? (car lat) a)
(member? a (cdr lat)))))))
; remove a list member
(define rember
(lambda (a lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) a) (cdr lat))
(else (cons (car lat) (rember a
(cdr lat)))))))
; find first s-exp in each interal list
; Page 43
(define firsts
(lambda (l)
(cond
((null? l) (quote ()))
(else (cons (car (car l)) (firsts (cdr l)))))))
(define seconds
(lambda (l)
(cond
((null? l) (quote ()))
(else (cons (cdr (car l)) (seconds (cdr l)))))))
; Page 48
(define insertR
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old) (cons old (cons new (cdr lat))))
(else (cons (car lat) (insertR new old (cdr lat)))))))))
; Page 51
(define insertL
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else
(cond
((eq? (car lat) old) (cons new (cons old (cdr lat))))
(else (cons (car lat) (insertL new old (cdr lat)))))))))
(define subst
(lambda (new old lat)
(cond
((null? lat) (quote ()))
(else (cond
((eq? (car lat) old)
(cons new (cdr lat)))
(else (cons
(car lat)
(subst new old (cdr lat)))))))))
; sub which comes first old1, or old2
; Page 52
(define subst2
(lambda (new old1 old2 lat)
(cond
((null? lat) (quote ()))
(else (cond
; ((eq? (car lat) old1)
; (cons new (cdr lat)))
; ((eq? (car lat) old2)
; (cons new (cdr lat)))
((or (eq? (car lat) old1) (eq? (car lat) old2))
(cons new (cdr lat)))
(else (cons
(car lat)
(subst2 new old1 old2 (cdr lat)))))))))
(define multirember
(lambda (a lat)
(cond ((null? lat) (quote ()))
(else (cond ((eq? (car lat) a) (multirember a (cdr lat)))
(else (cons (car lat) (multirember a (cdr lat)))))))))
; page 56
(define multiinsertR
(lambda (new old lat)
(cond ((null? lat) (quote ()))
(else (cond ((eq? (car lat) old)
(cons old (cons new (multiinsertR new old (cdr lat)))))
(else (cons (car lat)
(multiinsertR new old (cdr lat)))))))))
(define multiinsertL
(lambda (new old lat)
(cond ((null? lat) (quote ()))
(else (cond ((eq? (car lat) old)
(cons new (cons old (multiinsertL new old (cdr lat)))))
(else (cons (car lat)
(multiinsertL new old (cdr lat)))))))))
; page 57
(define multisubst
(lambda (new old lat)
(cond ((null? lat) (quote ()))
(else (cond ((eq? (car lat) old) (cons new (multisubst new old (cdr lat))))
(else (cons (car lat) (multisubst new old (cdr lat)))))))))
;; NUMBERS
;; Page 59
(define add1
(lambda (n)
(+ n 1)))
(define sub1
(lambda (n)
(- n 1)))
(define o+
(lambda (n m)
(cond
((zero? m) n)
(else
;;(print n)
(add1 (o+ n (sub1 m)))))))
(define o-
(lambda (n m)
(cond
((zero? m) n)
(else (sub1 (o- n (sub1 m)))))))
;; Tuples
;; page 64
(define addtup
(lambda (tup)
(cond
((null? tup) 0)
(else (o+ (car tup) (addtup (cdr tup)))))))
(define o*
(lambda (n m)
(cond
((zero? m) 0)
(else
(o+ n (o* n (sub1 m)))))))
;; page 69
(define tup+
(lambda (tup1 tup2)
(cond
((null? tup1) tup2)
((null? tup2) tup1)
(else
(cons (o+ (car tup1) (car tup2))
(tup+ (cdr tup1) (cdr tup2)))))))
;; page 71
(define o>
(lambda (n m)
(cond
((zero? n) #f)
((zero? m) #t)
(else
(o> (sub1 n) (sub1 m))))))
(define o<
(lambda (n m)
(cond
((zero? m) #f)
((zero? n) #t)
(else
(o< (sub1 n) (sub1 m))))))
;; page 74
(define o=?
(lambda (n m)
(cond
((zero? m) (zero? n))
((zero? n) #f)
(else (o=? (sub1 n) (sub1 m))))))
(define o=
(lambda (n m)
(cond
((o> n m) #f)
((o< n m) #f)
(else #t))))
(define o**
(lambda (n m)
(cond
((zero? m) 1)
(else (o* n (o** n (sub1 m)))))))
(define o/
(lambda (n m)
(cond
((o< n m) 0)
(else (add1 (o/ (o- n m) m))))))
;; page 76
(define length
(lambda (tup)
(cond
((null? tup) 0)
(else (add1 (length (cdr tup)))))))
; index
(define pick
(lambda (n lat)
(cond
((zero? (sub1 n)) (car lat))
(else (pick (sub1 n) (cdr lat))))))
;; page 77
; remove by index
(define rempick
(lambda (n lat)
(cond
((zero? (sub1 n)) (cdr lat))
(else (cons (car lat) (rempick (sub1 n) (cdr lat)))))))
; remove numbers from list
(define no-nums
(lambda (lat)
(cond
((null? lat) '())
(else (cond
((number? (car lat)) (no-nums (cdr lat)))
(else (cons (car lat) (no-nums (cdr lat)))))))))
; remove non-numbers from list
(define all-nums
(lambda (lat)
(cond
((null? lat) '())
(else (cond
((number? (car lat)) (cons (car lat) (all-nums (cdr lat))))
(else (all-nums (cdr lat))))))))
; is same atom?
(define eqan?
(lambda (a1 a2)
(cond
((and (number? a1) (number? a2))
(o= a1 a2))
((or (number? a1) (number? a2))
#f)
(else (eq? a1 a2)))))
(define occur
(lambda (a lat)
(cond
((null? lat) 0)
(else (cond
((eqan? a (car lat)) (add1 (occur a (cdr lat))))
(else (occur a (cdr lat))))))))
(define one?
(lambda (n)
(o= n 1)))
; same as rempick but using one?
(define rempick2
(lambda (n lat)
(cond
((one? n) (cdr lat))
(else (cons (car lat) (rempick2 (sub1 n) (cdr lat)))))))
;; 5. Oh my gawd it's full of stars*
;; S-expressions deep traversal?
;; page 81
; rember-star removes nested members
(define rember*
(lambda (a l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? a (car l)) (rember* a (cdr l)))
(else (cons (car l) (rember* a (cdr l))))))
(else (cons (rember* a (car l)) (rember* a (cdr l)))))))
(define insertR*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? old (car l))
(cons old (cons new (insertR* new old (cdr l)))))
(else
(cons (car l) (insertR* new old (cdr l))))))
(else
(cons (insertR* new old (car l)) (insertR* new old (cdr l)))))))
(define occur*
(lambda (a l)
(cond
((null? l) 0)
((atom? (car l))
(cond
((eq? (car l) a)
(add1 (occur* a (cdr l))))
(else
(occur* a (cdr l)))))
(else
(o+ (occur* a (car l)) (occur* a (cdr l)))))))
(define subst*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old)
(cons new (subst* new old (cdr l))))
(else
(cons (car l) (subst* new old (cdr l))))))
(else
(cons (subst* new old (car l)) (subst* new old (cdr l)))))))
(define insertL*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old)
(cons new (cons old (insertL* new old (cdr l)))))
(else
(cons (car l) (insertL* new old (cdr l))))))
(else
(cons (insertL* new old (car l)) (insertL* new old (cdr l)))))))
(define member*
(lambda (a l)
(cond
((null? l) #f)
((atom? (car l))
(or
(eq? (car l) a)
(member* a (cdr l))))
(else
(or (member* a (car l)) (member* a (cdr l)))))))
(define leftmost
(lambda (l)
(cond
((atom? (car l)) (car l))
(else (leftmost (car l))))))
; or - asks questions one at a time until it finds one that is true
; returns bool
; page 91
(define eqlist?
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
((and (atom? (car l1)) (atom? (car l2)))
(and (eqan? (car l1) (car l2))
(eqlist? (cdr l1) (cdr l2))))
((or (atom? (car l1)) (atom? (car l2))) #f)
(else
(and (eqlist? (car l1) (car l2)) (eqlist? (cdr l1) (cdr l2)))))))
(define equal?
(lambda (s1 s2)
(cond
((and (atom? s1) (atom? s2))
(eqan? s1 s2))
((or (atom? s1) (atom? s2)) #f)
(else (eqlist? s1 s2)))))
; eqlist? rewrite using equal?
(define eqlist?r
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
(else
(and (equal? (car l1) (car l2))
(eqlist?r (cdr l1) (cdr l2)))))))
; rember rewrite using equal?
(define remberr
(lambda (s l)
(cond
((null? l) '())
((equal? (car l) s) (cdr l))
(else (cons (car l) (remberr s (cdr l)))))))
; page 99
(define numbered?
(lambda (aexp)
(cond
((atom? aexp) (number? aexp))
(else
(and (numbered? (car aexp))
(numbered? (car (cdr (cdr aexp)))))))))
(define operator
(lambda (aexp)
(car aexp)))
(define 1st-sub-exp
(lambda (aexp)
(car (cdr aexp))))
(define 2nd-sub-exp
(lambda (aexp)
(car (cdr (cdr aexp)))))
(define value_v1
(lambda (nexp)
(cond
((atom? nexp) nexp)
((eq? (operator nexp) 'o+)
(o+ (value_v1 (1st-sub-exp nexp))
(value_v1 (2nd-sub-exp nexp))))
((eq? (operator nexp) 'o*)
(o* (value_v1 (1st-sub-exp nexp))
(value_v1 (2nd-sub-exp nexp))))
(else
(o* (value_v1 (1st-sub-exp nexp))
(value_v1 (2nd-sub-exp nexp)))))))
; page 111
(define set?
(lambda (lat)
(cond
((null? lat) #t)
((member? (car lat) (cdr lat)) #f)
(else (set? (cdr lat))))))
(define makeset-old
(lambda (lat)
(cond
((null? lat) '())
((member? (car lat) (cdr lat)) (makeset (cdr lat)))
(else (cons (car lat) (makeset (cdr lat)))))))
; makeset using multirember
; preserves list order
(define makeset
(lambda (lat)
(cond
((null? lat) '())
(else
(cons (car lat) (makeset (multirember (car lat) (cdr lat))))))))
(define subset?
(lambda (subset set)
(cond
((null? subset) #t)
(else (and
(member? (car subset) set)
(subset? (cdr subset) set))))))
(define eqset?
(lambda (set1 set2)
(and (subset? set1 set2) (subset? set2 set1))))
; find any of atoms in set1 in set2
(define intersect?
(lambda (set1 set2)
(cond
((null? set1) #f)
(else (or (member? (car set1) set2) (intersect? (cdr set1) set2))))))
(define intersect (lambda (set1 set2)
(cond
((null? set1) '())
((member? (car set1) set2) (cons (car set1) (intersect (cdr set1) set2)))
(else (intersect (cdr set1) set2)))))
(define union (lambda (set1 set2)
(cond
((null? set1) set2)
((member? (car set1) set2) (union (cdr set1) set2))
(else (cons (car set1) (union (cdr set1) set2))))))
; set difference
; return all atoms from set1 that are not in set2
(define xxx (lambda (set1 set2)
(cond
((null? set1) '())
((member? (car set1) set2) (xxx (cdr set1) set2))
(else (cons (car set1) (xxx (cdr set1) set2))))))
(define intersect-all (lambda (l-set)
(cond
((null? (cdr l-set)) (car l-set))
(else (intersect (car l-set) (intersect-all (cdr l-set)))))))
(define a-pair? (lambda (x)
(cond
((atom? x) #f)
((null? x) #f)
((null? (cdr x)) #f)
((null? (cdr (cdr x))) #t)
(else #f))))
(define first (lambda (p) (car p)))
(define second (lambda (p) (car (cdr p))))
(define third (lambda (p) (car (cdr (cdr p)))))
(define build (lambda (s1 s2) (cons s1 (cons s2 (quote ())))))
(define fun? (lambda (rel) (set? (firsts rel))))
(define revpair (lambda (p)
(build (second p) (first p))))
(define revrel (lambda (rel)
(cond
((null? rel) (quote ()))
(else (cons
(revpair (car rel))
(revrel (cdr rel)))))))
(define fullfun? (lambda (rel) (set? (seconds rel))))
(define one-to-one? (lambda (rel) (fun? (revrel rel))))
; Lambda the Ultimate
;(define rember-f (lambda (test? a l)
; (cond
; ((null? l) '())
; ((test? (car l) a) (cdr l))
; (else (cons (car l) (rember-f test? a (cdr l)))))))
(define rember-f (lambda (test?) (lambda (a l)
(cond
((null? l) '())
((test? (car l) a) (cdr l))
(else (cons (car l) ((rember-f test?) a (cdr l))))))))
(define insertL-f (lambda (test?) (lambda (new old l)
(cond
((null? l) '())
((test? (car l) old) (cons new (cons old (cdr l))))
(else (cons (car l) ((insertL-f test?) new old (cdr l))))))))
(define insertR-f (lambda (test?) (lambda (new old l)
(cond
((null? l) '())
((test? (car l) old) (cons old (cons new (cdr l))))
(else (cons (car l) ((insertR-f test?) new old (cdr l))))))))
(define seqL (lambda (new old l)
(cons new (cons old l))))
(define seqR (lambda (new old l)
(cons old (cons new l))))
(define insert-g (lambda (seq) (lambda (new old l)
(cond
((null? l) '())
((eq? (car l) old) (seq new old (cdr l)))
(else (cons (car l) ((insert-g seq) new old l)))))))
(define insertLr (insert-g seqL))
(define insertRr (insert-g seqR))
(define insertLrr (insert-g
(lambda (new old l)
(cons new (cons old l)))))
(define seqS (lambda (new old l) (cons new l)))
(define subst_r (insert-g seqS))
(define atom-to-function (lambda (x)
(cond
((eq? x 'o+) o+)
((eq? x 'o*) o*)
(else o**))))
(define value_v2
(lambda (nexp)
(cond
((atom? nexp) nexp)
(else
((atom-to-function (operator nexp))
(value_v2 (1st-sub-exp nexp))
(value_v2 (2nd-sub-exp nexp)))))))
(define multirember_r (lambda (test?) (lambda (a lat)
(cond
((null? lat) (quote ()))
(else (cond
((test? (car lat) a) ((multirember_r test?) a (cdr lat)))
(else (cons (car lat) ((multirember_r test?) a (cdr lat))))))))))
(define multirember-eq? (multirember_r eq?))
(define multiremberT (lambda (test? lat)
(cond
((null? lat) (quote ()))
(else (cond
((test? (car lat)) (multiremberT test? (cdr lat)))
(else (cons (car lat) (multiremberT test? (cdr lat)))))))))
(define multirember&co (lambda (a lat col)
(cond
((null? lat) (col (quote ()) (quote ())))
((eq? (car lat) a)
(multirember&co a (cdr lat)
(lambda (newlat seen)
(col newlat (cons (car lat) seen)))))
(else
(multirember&co a (cdr lat)
(lambda (newlat seen)
(col (cons (car lat) newlat) seen)))))))
(define a-friend (lambda (x y) (null? y)))
(define last-friend (lambda (x y) (length x)))
(define multiinsertLR
(lambda (new oldL oldR lat)
(cond
((null? lat) (quote ()))
((eq? (car lat) oldL)
(cons new (cons oldL (multiinsertLR new oldL oldR (cdr lat)))))
((eq? (car lat) oldR)
(cons oldR (cons new (multiinsertLR new oldL oldR (cdr lat)))))
(else (cons (car lat)
(multiinsertLR new oldL oldR (cdr lat)))))))
(define multiinsertLR&co
(lambda (new oldL oldR lat col)
(cond
((null? lat) (col (quote ()) 0 0))
((eq? (car lat) oldL)
(multiinsertLR&co new oldL oldR (cdr lat) (lambda (newlat l r)
(col (cons new (cons oldL newlat)) (add1 l) r))))
((eq? (car lat) oldR)
(multiinsertLR&co new oldL oldR (cdr lat) (lambda (newlat l r)
(col (cons oldR (cons new newlat)) l (add1 r)))))
(else
(multiinsertLR&co new oldL oldR (cdr lat) (lambda (newlat l r)
(col (cons (car lat) newlat) l r)))))))
(define even? (lambda (n)
(o= (o* (o/ n 2) 2) n)))
(define evens-only* (lambda (l)
(cond
((null? l) '())
((atom? (car l))
(cond
((even? (car l)) (cons (car l) (evens-only* (cdr l))))
(else (evens-only* (cdr l)))))
(else (cons (evens-only* (car l)) (evens-only* (cdr l)))))))
(define evens-only*&co (lambda (l col)
(cond
((null? l) (col '() 1 0))
((atom? (car l))
(cond
((even? (car l)) (evens-only*&co (cdr l) (lambda (newl prod sum)
(col (cons (car l) newl) (o* (car l) prod) sum))))
(else (evens-only*&co (cdr l) (lambda (newl prod sum)
(col newl prod (o+ (car l) sum)))))))
(else (evens-only*&co (car l) (lambda (newl prod sum)
(evens-only*&co (cdr l) (lambda (newl2 prod2 sum2)
(col (cons newl newl2) (o* prod prod2) (o+ sum sum2))))))))))
; not recurring on a part of lat
(define keep-looking (lambda (a sorn lat)
(cond
((number? sorn) (keep-looking a (pick sorn lat) lat))
(else (eq? sorn a)))))
(define looking (lambda (a lat)
(keep-looking a (pick 1 lat) lat)))
(define eternity (lambda (x) (eternity x)))
(define shift (lambda (tup)
(build (first (first tup)) (build (second (first tup)) (second tup)))))
(define align (lambda (tora)
(cond
((atom? tora) tora)
((a-pair? (first tora)) (align (shift tora)))
(else (build (first tora) (align (second tora)))))))
(define length* (lambda (tora)
(cond
((atom? tora) 1)
(else (o+ (length* (first tora)) (length* (second tora)))))))
(define weight* (lambda (tora)
(cond
((atom? tora) 1)
(else (o+
(o* 2 (length* (first tora)))
(length* (second tora)))))))
; dang, has non-total cases
(define shuffle (lambda (tora)
(cond
((atom? tora) tora)
((a-pair? (first tora)) (shuffle (revpair tora)))
(else (build (shuffle (first tora)) (shuffle (second tora)))))))
; lothar collatz
(define C (lambda (n)
(cond
((one? n) 1)
((even? n) (C (o/ n 2)))
(else (C (add1 (o* 3 n)))))))
; wilhelm ackerman
(define A (lambda (n m)
(cond
((zero? n) (add1 m))
((zero? m) (A (sub1 n) 1))
(else (A (sub1 n) (A n (sub1 m)))))))
; the first function that we can describe precisely
; but cannot define in our language.
; turing, godel
;(define will-stop? (lambda (f)
; (cond
; ((o= 0 (f '())) #t)
; (else #f))))
;(define last-try (lambda (x)
; (and (will-stop? last-try) (eternity x))))
; entry is a pair of lists, whose first list is a set
(define new-entry build)
(define lookup-in-entry (lambda (name entry entry-f)
(lookup-in-entry-help name (first entry) (second entry) entry-f)))
(define lookup-in-entry-help (lambda (name keys values entry-f)
(cond
((null? keys) (entry-f name))
((eq? (car keys) name) (car values))
(else (lookup-in-entry-help name (cdr keys) (cdr values) entry-f)))))
(define extend-table cons)
(define lookup-in-table (lambda (name table table-f)
(cond
((null? table) (table-f table))
(else (lookup-in-entry name (car table) (lambda (name)
(lookup-in-table name (cdr table) table-f)))))))
;*const
;*quote
;*identifier
;*lambda
;*cond
;*application
(define text-of second)
(define table-of first)
(define formals-of second)
(define body-of third)
(define initial-table (lambda (name) (car (quote ()))))
(define *const (lambda (e table)
(cond
((number? e) e)
((eq? e #t) #t)
((eq? e #f) #f)
(else (build (quote primitive) e)))))
(define *quote (lambda (e table) (text-of e)))
(define *identifier (lambda (e table)
(lookup-in-table e table initial-table)))
(define *lambda (lambda (e table)
(build (quote non-primitive) (cons table (cdr e)))))
(define atom-to-action (lambda (e)
(cond
((number? e) *const)
((eq? e #t) *const)
((eq? e #f) *const)
((eq? e (quote cons)) *const)
((eq? e (quote car)) *const)
((eq? e (quote cdr)) *const)
((eq? e (quote null?)) *const)
((eq? e (quote eq?)) *const)
((eq? e (quote atom?)) *const)
((eq? e (quote zero?)) *const)
((eq? e (quote add1)) *const)
((eq? e (quote sub1)) *const)
((eq? e (quote number?)) *const)
(else *identifier))))
(define list-to-action (lambda (e)
(cond
((atom? (car e)
(cond
((eq? (car e) (quote quote)) *quote)
((eq? (car e) (quote lambda)) *lambda)
((eq? (car e) (quote cond)) *cond)
(else *application))))
(else *application))))
(define expression-to-action (lambda (e)
(cond
((atom? e) (atom-to-action e))
(else (list-to-action e)))))
(define value (lambda (e)
(meaning e (quote ()))))
(define meaning (lambda (e table)
((expression-to-action e) e table)))
(define evcon (lambda (lines table)
(cond
((else? (question-of (car lines)))
(meaning (answer-of (car lines)) table))
((meaning (question-of (car lines)) table)
(meaning (answer-of (car lines)) table))
(else (evcon (cdr lines) table)))))
(define else? (lambda (x)
(cond
((atom? x) (eq? x (quote else)))
(else #f))))
(define question-of first)
(define answer-of second)
(define *cond (lambda (e table)
(evcon (cond-lines-of e) table)))
(define cond-lines-of cdr)
(define evlis (lambda (args table)
(cond
((null? args) (quote ()))
(else
(cons (meaning (car args) table) (evlis (cdr args) table))))))
(define *application (lambda (e table)
(apply
(meaning (function-of e) table)
(evlis (arguments-of e) table))))
(define function-of car)
(define arguments-of cdr)
(define primitive? (lambda (l)
(eq? (first l) (quote primitive))))
(define non-primitive? (lambda (l)
(eq? (first l) (quote non-primitive))))
(define apply (lambda (fun vals)
(cond
((primitive? fun) (apply-primitive (second fun) vals))
((non-primitive? fun) (apply-closure (second fun) vals)))))
(define apply-primitive (lambda (name vals)
(cond
((eq? name (quote cons)) (cons (first vals) (second vals)))
((eq? name (quote car)) (car (first vals)))
((eq? name (quote cdr)) (cdr (first vals)))
((eq? name (quote null?)) (null? (first vals)))
((eq? name (quote eq?)) (eq? (first vals) (second vals)))
((eq? name (quote atom?)) (:atom? (first vals)))
((eq? name (quote zero?)) (zero? (first vals)))
((eq? name (quote add1)) (add1 (first vals)))
((eq? name (quote sub1)) (sub1 (first vals)))
((eq? name (quote number?) (number? (first vals)))))))
(define :atom? (lambda (x)
(cond
((atom? x) #t)
((null? x) #f)
((eq? (car x) (quote primitive)) #t)
((eq? (car x) (quote non-primitive) #t))
(else #f))))
(define apply-closure (lambda (closure vals)
(meaning (body-of closure)
(extend-table (new-entry (formals-of closure) vals) (table-of closure)))))