forked from RobinBruegger/PartiallyReversibleUnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bratsDataset.py
141 lines (122 loc) · 5.72 KB
/
bratsDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import torch.utils.data
import h5py
import numpy as np
import time
import random
import dataProcessing.augmentation as aug
class BratsDataset(torch.utils.data.Dataset):
#mode must be trian, test or val
def __init__(self, filePath, expConfig, mode="train", randomCrop=None, hasMasks=True, returnOffsets=False):
super(BratsDataset, self).__init__()
self.filePath = filePath
self.mode = mode
self.file = None
self.trainOriginalClasses = expConfig.TRAIN_ORIGINAL_CLASSES
self.randomCrop = randomCrop
self.hasMasks = hasMasks
self.returnOffsets = returnOffsets
#augmentation settings
self.nnAugmentation = expConfig.NN_AUGMENTATION
self.softAugmentation = expConfig.SOFT_AUGMENTATION
self.doRotate = expConfig.DO_ROTATE
self.rotDegrees = expConfig.ROT_DEGREES
self.doScale = expConfig.DO_SCALE
self.scaleFactor = expConfig.SCALE_FACTOR
self.doFlip = expConfig.DO_FLIP
self.doElasticAug = expConfig.DO_ELASTIC_AUG
self.sigma = expConfig.SIGMA
self.doIntensityShift = expConfig.DO_INTENSITY_SHIFT
self.maxIntensityShift = expConfig.MAX_INTENSITY_SHIFT
def __getitem__(self, index):
#lazily open file
self.openFileIfNotOpen()
#load from hdf5 file
image = self.file["images_" + self.mode][index, ...]
if self.hasMasks: labels = self.file["masks_" + self.mode][index, ...]
#Prepare data depeinding on soft/hard augmentation scheme
if not self.nnAugmentation:
if not self.trainOriginalClasses and (self.mode != "train" or self.softAugmentation):
if self.hasMasks: labels = self._toEvaluationOneHot(labels)
defaultLabelValues = np.zeros(3, dtype=np.float32)
else:
if self.hasMasks: labels = self._toOrignalCategoryOneHot(labels)
defaultLabelValues = np.asarray([1, 0, 0, 0, 0], dtype=np.float32)
elif self.hasMasks:
if labels.ndim < 4:
labels = np.expand_dims(labels, 3)
defaultLabelValues = np.asarray([0], dtype=np.float32)
#augment data
if self.mode == "train":
image, labels = aug.augment3DImage(image,
labels,
defaultLabelValues,
self.nnAugmentation,
self.doRotate,
self.rotDegrees,
self.doScale,
self.scaleFactor,
self.doFlip,
self.doElasticAug,
self.sigma,
self.doIntensityShift,
self.maxIntensityShift)
if self.nnAugmentation:
if self.hasMasks: labels = self._toEvaluationOneHot(np.squeeze(labels, 3))
else:
if self.mode == "train" and not self.softAugmentation and not self.trainOriginalClasses and self.hasMasks:
labels = self._toOrdinal(labels)
labels = self._toEvaluationOneHot(labels)
# random crop
if not self.randomCrop is None:
shape = image.shape
x = random.randint(0, shape[0] - self.randomCrop[0])
y = random.randint(0, shape[1] - self.randomCrop[1])
z = random.randint(0, shape[2] - self.randomCrop[2])
image = image[x:x+self.randomCrop[0], y:y+self.randomCrop[1], z:z+self.randomCrop[2], :]
if self.hasMasks: labels = labels[x:x + self.randomCrop[0], y:y + self.randomCrop[1], z:z + self.randomCrop[2], :]
image = np.transpose(image, (3, 0, 1, 2)) # bring into NCWH format
if self.hasMasks: labels = np.transpose(labels, (3, 0, 1, 2)) # bring into NCWH format
# to tensor
#image = image[:, 0:32, 0:32, 0:32]
image = torch.from_numpy(image)
if self.hasMasks:
#labels = labels[:, 0:32, 0:32, 0:32]
labels = torch.from_numpy(labels)
#get pid
pid = self.file["pids_" + self.mode][index]
if self.returnOffsets:
xOffset = self.file["xOffsets_" + self.mode][index]
yOffset = self.file["yOffsets_" + self.mode][index]
zOffset = self.file["zOffsets_" + self.mode][index]
if self.hasMasks:
return image, str(pid), labels, xOffset, yOffset, zOffset
else:
return image, pid, xOffset, yOffset, zOffset
else:
if self.hasMasks:
return image, str(pid), labels
else:
return image, pid
def __len__(self):
#lazily open file
self.openFileIfNotOpen()
return self.file["images_" + self.mode].shape[0]
def openFileIfNotOpen(self):
if self.file == None:
self.file = h5py.File(self.filePath, "r")
def _toEvaluationOneHot(self, labels):
shape = labels.shape
out = np.zeros([shape[0], shape[1], shape[2], 3], dtype=np.float32)
out[:, :, :, 0] = (labels != 0)
out[:, :, :, 1] = (labels != 0) * (labels != 2)
out[:, :, :, 2] = (labels == 4)
return out
def _toOrignalCategoryOneHot(self, labels):
shape = labels.shape
out = np.zeros([shape[0], shape[1], shape[2], 5], dtype=np.float32)
for i in range(5):
out[:, :, :, i] = (labels == i)
return out
def _toOrdinal(self, labels):
return np.argmax(labels, axis=3)