-
-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
algorithm.nim
824 lines (765 loc) · 25.9 KB
/
algorithm.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements some common generic algorithms.
##
## Basic usage
## ===========
##
## .. code-block::
## import algorithm
##
## type People = tuple
## year: int
## name: string
##
## var a: seq[People]
##
## a.add((2000, "John"))
## a.add((2005, "Marie"))
## a.add((2010, "Jane"))
##
## # Sorting with default system.cmp
## a.sort()
## assert a == @[(year: 2000, name: "John"), (year: 2005, name: "Marie"),
## (year: 2010, name: "Jane")]
##
## proc myCmp(x, y: People): int =
## if x.name < y.name: -1
## elif x.name == y.name: 0
## else: 1
##
## # Sorting with custom proc
## a.sort(myCmp)
## assert a == @[(year: 2010, name: "Jane"), (year: 2000, name: "John"),
## (year: 2005, name: "Marie")]
##
##
## See also
## ========
## * `sequtils module<sequtils.html>`_ for working with the built-in seq type
## * `tables module<tables.html>`_ for sorting tables
type
SortOrder* = enum
Descending, Ascending
proc `*`*(x: int, order: SortOrder): int {.inline.} =
## Flips ``x`` if ``order == Descending``.
## If ``order == Ascending`` then ``x`` is returned.
##
## ``x`` is supposed to be the result of a comparator, i.e.
## | ``< 0`` for *less than*,
## | ``== 0`` for *equal*,
## | ``> 0`` for *greater than*.
runnableExamples:
assert `*`(-123, Descending) == 123
assert `*`(123, Descending) == -123
assert `*`(-123, Ascending) == -123
assert `*`(123, Ascending) == 123
var y = order.ord - 1
result = (x xor y) - y
template fillImpl[T](a: var openArray[T], first, last: int, value: T) =
var x = first
while x <= last:
a[x] = value
inc(x)
proc fill*[T](a: var openArray[T], first, last: Natural, value: T) =
## Fills the slice ``a[first..last]`` with ``value``.
##
## If an invalid range is passed, it raises IndexDefect.
runnableExamples:
var a: array[6, int]
a.fill(1, 3, 9)
assert a == [0, 9, 9, 9, 0, 0]
a.fill(3, 5, 7)
assert a == [0, 9, 9, 7, 7, 7]
doAssertRaises(IndexDefect, a.fill(1, 7, 9))
fillImpl(a, first, last, value)
proc fill*[T](a: var openArray[T], value: T) =
## Fills the container ``a`` with ``value``.
runnableExamples:
var a: array[6, int]
a.fill(9)
assert a == [9, 9, 9, 9, 9, 9]
a.fill(4)
assert a == [4, 4, 4, 4, 4, 4]
fillImpl(a, 0, a.high, value)
proc reverse*[T](a: var openArray[T], first, last: Natural) =
## Reverses the slice ``a[first..last]``.
##
## If an invalid range is passed, it raises IndexDefect.
##
## **See also:**
## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a ``seq[T]``
## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a ``seq[T]``
runnableExamples:
var a = [1, 2, 3, 4, 5, 6]
a.reverse(1, 3)
assert a == [1, 4, 3, 2, 5, 6]
a.reverse(1, 3)
assert a == [1, 2, 3, 4, 5, 6]
doAssertRaises(IndexDefect, a.reverse(1, 7))
var x = first
var y = last
while x < y:
swap(a[x], a[y])
dec(y)
inc(x)
proc reverse*[T](a: var openArray[T]) =
## Reverses the contents of the container ``a``.
##
## **See also:**
## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a ``seq[T]``
## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a ``seq[T]``
runnableExamples:
var a = [1, 2, 3, 4, 5, 6]
a.reverse()
assert a == [6, 5, 4, 3, 2, 1]
a.reverse()
assert a == [1, 2, 3, 4, 5, 6]
reverse(a, 0, max(0, a.high))
proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] =
## Returns the reverse of the slice ``a[first..last]``.
##
## If an invalid range is passed, it raises IndexDefect.
##
## **See also:**
## * `reverse proc<#reverse,openArray[T],Natural,Natural>`_ reverse a slice
## * `reverse proc<#reverse,openArray[T]>`_
runnableExamples:
let
a = [1, 2, 3, 4, 5, 6]
b = a.reversed(1, 3)
assert b == @[4, 3, 2]
assert last >= first-1
var i = last - first
var x = first.int
result = newSeq[T](i + 1)
while i >= 0:
result[i] = a[x]
dec(i)
inc(x)
proc reversed*[T](a: openArray[T]): seq[T] =
## Returns the reverse of the container ``a``.
##
## **See also:**
## * `reverse proc<#reverse,openArray[T],Natural,Natural>`_ reverse a slice
## * `reverse proc<#reverse,openArray[T]>`_
runnableExamples:
let
a = [1, 2, 3, 4, 5, 6]
b = reversed(a)
assert b == @[6, 5, 4, 3, 2, 1]
reversed(a, 0, a.high)
proc binarySearch*[T, K](a: openArray[T], key: K,
cmp: proc (x: T, y: K): int {.closure.}): int =
## Binary search for ``key`` in ``a``. Returns -1 if not found.
##
## ``cmp`` is the comparator function to use, the expected return values are
## the same as that of system.cmp.
runnableExamples:
assert binarySearch(["a", "b", "c", "d"], "d", system.cmp[string]) == 3
assert binarySearch(["a", "b", "d", "c"], "d", system.cmp[string]) == 2
if a.len == 0:
return -1
let len = a.len
if len == 1:
if cmp(a[0], key) == 0:
return 0
else:
return -1
result = 0
if (len and (len - 1)) == 0:
# when `len` is a power of 2, a faster shr can be used.
var step = len shr 1
var cmpRes: int
while step > 0:
let i = result or step
cmpRes = cmp(a[i], key)
if cmpRes == 0:
return i
if cmpRes < 1:
result = i
step = step shr 1
if cmp(a[result], key) != 0: result = -1
else:
var b = len
var cmpRes: int
while result < b:
var mid = (result + b) shr 1
cmpRes = cmp(a[mid], key)
if cmpRes == 0:
return mid
if cmpRes < 0:
result = mid + 1
else:
b = mid
if result >= len or cmp(a[result], key) != 0: result = -1
proc binarySearch*[T](a: openArray[T], key: T): int =
## Binary search for ``key`` in ``a``. Returns -1 if not found.
runnableExamples:
assert binarySearch([0, 1, 2, 3, 4], 4) == 4
assert binarySearch([0, 1, 4, 2, 3], 4) == 2
binarySearch(a, key, cmp[T])
const
onlySafeCode = true
proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.
closure.}): int =
## Returns a position to the first element in the ``a`` that is greater than
## ``key``, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## ``insert(thing, elm, lowerBound(thing, elm))``
## the sequence will still be sorted.
##
## If an invalid range is passed, it raises IndexDefect.
##
## The version uses ``cmp`` to compare the elements.
## The expected return values are the same as that of ``system.cmp``.
##
## **See also:**
## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order
## * `upperBound proc<#upperBound,openArray[T],T>`_
runnableExamples:
var arr = @[1, 2, 3, 5, 6, 7, 8, 9]
assert arr.lowerBound(3, system.cmp[int]) == 2
assert arr.lowerBound(4, system.cmp[int]) == 3
assert arr.lowerBound(5, system.cmp[int]) == 3
arr.insert(4, arr.lowerBound(4, system.cmp[int]))
assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9]
result = a.low
var count = a.high - a.low + 1
var step, pos: int
while count != 0:
step = count shr 1
pos = result + step
if cmp(a[pos], key) < 0:
result = pos + 1
count -= step + 1
else:
count = step
proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])
## Returns a position to the first element in the ``a`` that is greater than
## ``key``, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## ``insert(thing, elm, lowerBound(thing, elm))``
## the sequence will still be sorted.
##
## The version uses the default comparison function ``cmp``.
##
## **See also:**
## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order
## * `upperBound proc<#upperBound,openArray[T],T>`_
proc upperBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.
closure.}): int =
## Returns a position to the first element in the ``a`` that is not less
## (i.e. greater or equal to) than ``key``, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## ``insert(thing, elm, upperBound(thing, elm))``
## the sequence will still be sorted.
##
## If an invalid range is passed, it raises IndexDefect.
##
## The version uses ``cmp`` to compare the elements. The expected
## return values are the same as that of ``system.cmp``.
##
## **See also:**
## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order
## * `lowerBound proc<#lowerBound,openArray[T],T>`_
runnableExamples:
var arr = @[1, 2, 3, 5, 6, 7, 8, 9]
assert arr.upperBound(2, system.cmp[int]) == 2
assert arr.upperBound(3, system.cmp[int]) == 3
assert arr.upperBound(4, system.cmp[int]) == 3
arr.insert(4, arr.upperBound(3, system.cmp[int]))
assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9]
result = a.low
var count = a.high - a.low + 1
var step, pos: int
while count != 0:
step = count shr 1
pos = result + step
if cmp(a[pos], key) <= 0:
result = pos + 1
count -= step + 1
else:
count = step
proc upperBound*[T](a: openArray[T], key: T): int = upperBound(a, key, cmp[T])
## Returns a position to the first element in the ``a`` that is not less
## (i.e. greater or equal to) than ``key``, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## ``insert(thing, elm, upperBound(thing, elm))``
## the sequence will still be sorted.
##
## The version uses the default comparison function ``cmp``.
##
## **See also:**
## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order
## * `lowerBound proc<#lowerBound,openArray[T],T>`_
template `<-` (a, b) =
when defined(gcDestructors):
a = move b
elif onlySafeCode:
shallowCopy(a, b)
else:
copyMem(addr(a), addr(b), sizeof(T))
proc merge[T](a, b: var openArray[T], lo, m, hi: int,
cmp: proc (x, y: T): int {.closure.}, order: SortOrder) =
# optimization: If max(left) <= min(right) there is nothing to do!
# 1 2 3 4 ## 5 6 7 8
# -> O(n) for sorted arrays.
# On random data this safes up to 40% of merge calls
if cmp(a[m], a[m+1]) * order <= 0: return
var j = lo
# copy a[j..m] into b:
assert j <= m
when onlySafeCode:
var bb = 0
while j <= m:
b[bb] <- a[j]
inc(bb)
inc(j)
else:
copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
j = m+1
var i = 0
var k = lo
# copy proper element back:
while k < j and j <= hi:
if cmp(b[i], a[j]) * order <= 0:
a[k] <- b[i]
inc(i)
else:
a[k] <- a[j]
inc(j)
inc(k)
# copy rest of b:
when onlySafeCode:
while k < j:
a[k] <- b[i]
inc(k)
inc(i)
else:
if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k))
func sort*[T](a: var openArray[T],
cmp: proc (x, y: T): int {.closure.},
order = SortOrder.Ascending) =
## Default Nim sort (an implementation of merge sort). The sorting
## is guaranteed to be stable and the worst case is guaranteed to
## be O(n log n).
##
## The current implementation uses an iterative
## mergesort to achieve this. It uses a temporary sequence of
## length ``a.len div 2``. If you do not wish to provide your own
## ``cmp``, you may use ``system.cmp`` or instead call the overloaded
## version of ``sort``, which uses ``system.cmp``.
##
## .. code-block:: nim
##
## sort(myIntArray, system.cmp[int])
## # do not use cmp[string] here as we want to use the specialized
## # overload:
## sort(myStrArray, system.cmp)
##
## You can inline adhoc comparison procs with the `do notation
## <manual_experimental.html#do-notation>`_. Example:
##
## .. code-block:: nim
##
## people.sort do (x, y: Person) -> int:
## result = cmp(x.surname, y.surname)
## if result == 0:
## result = cmp(x.name, y.name)
##
## **See also:**
## * `sort proc<#sort,openArray[T]>`_
## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by ``cmp`` in the specified order
## * `sorted proc<#sorted,openArray[T]>`_
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
runnableExamples:
var d = ["boo", "fo", "barr", "qux"]
proc myCmp(x, y: string): int =
if x.len() > y.len() or x.len() == y.len(): 1
else: -1
sort(d, myCmp)
assert d == ["fo", "qux", "boo", "barr"]
var n = a.len
var b: seq[T]
newSeq(b, n div 2)
var s = 1
while s < n:
var m = n-1-s
while m >= 0:
merge(a, b, max(m-s+1, 0), m, m+s, cmp, order)
dec(m, s*2)
s = s*2
proc sort*[T](a: var openArray[T], order = SortOrder.Ascending) = sort[T](a,
system.cmp[T], order)
## Shortcut version of ``sort`` that uses ``system.cmp[T]`` as the comparison function.
##
## **See also:**
## * `sort func<#sort,openArray[T],proc(T,T)>`_
## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by ``cmp`` in the specified order
## * `sorted proc<#sorted,openArray[T]>`_
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
order = SortOrder.Ascending): seq[T] =
## Returns ``a`` sorted by ``cmp`` in the specified ``order``.
##
## **See also:**
## * `sort func<#sort,openArray[T],proc(T,T)>`_
## * `sort proc<#sort,openArray[T]>`_
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
runnableExamples:
let
a = [2, 3, 1, 5, 4]
b = sorted(a, system.cmp[int])
c = sorted(a, system.cmp[int], Descending)
d = sorted(["adam", "dande", "brian", "cat"], system.cmp[string])
assert b == @[1, 2, 3, 4, 5]
assert c == @[5, 4, 3, 2, 1]
assert d == @["adam", "brian", "cat", "dande"]
result = newSeq[T](a.len)
for i in 0 .. a.high:
result[i] = a[i]
sort(result, cmp, order)
proc sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] =
## Shortcut version of ``sorted`` that uses ``system.cmp[T]`` as the comparison function.
##
## **See also:**
## * `sort func<#sort,openArray[T],proc(T,T)>`_
## * `sort proc<#sort,openArray[T]>`_
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
runnableExamples:
let
a = [2, 3, 1, 5, 4]
b = sorted(a)
c = sorted(a, Descending)
d = sorted(["adam", "dande", "brian", "cat"])
assert b == @[1, 2, 3, 4, 5]
assert c == @[5, 4, 3, 2, 1]
assert d == @["adam", "brian", "cat", "dande"]
sorted[T](a, system.cmp[T], order)
template sortedByIt*(seq1, op: untyped): untyped =
## Convenience template around the ``sorted`` proc to reduce typing.
##
## The template injects the ``it`` variable which you can use directly in an
## expression.
##
## Because the underlying ``cmp()`` is defined for tuples you can do
## a nested sort.
##
## **See also:**
## * `sort func<#sort,openArray[T],proc(T,T)>`_
## * `sort proc<#sort,openArray[T]>`_
## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by ``cmp`` in the specified order
## * `sorted proc<#sorted,openArray[T]>`_
runnableExamples:
type Person = tuple[name: string, age: int]
var
p1: Person = (name: "p1", age: 60)
p2: Person = (name: "p2", age: 20)
p3: Person = (name: "p3", age: 30)
p4: Person = (name: "p4", age: 30)
people = @[p1, p2, p4, p3]
assert people.sortedByIt(it.name) == @[(name: "p1", age: 60), (name: "p2",
age: 20), (name: "p3", age: 30), (name: "p4", age: 30)]
# Nested sort
assert people.sortedByIt((it.age, it.name)) == @[(name: "p2", age: 20),
(name: "p3", age: 30), (name: "p4", age: 30), (name: "p1", age: 60)]
var result = sorted(seq1, proc(x, y: typeof(items(seq1), typeOfIter)): int =
var it {.inject.} = x
let a = op
it = y
let b = op
result = cmp(a, b))
result
func isSorted*[T](a: openArray[T],
cmp: proc(x, y: T): int {.closure.},
order = SortOrder.Ascending): bool =
## Checks to see whether ``a`` is already sorted in ``order``
## using ``cmp`` for the comparison. Parameters identical
## to ``sort``. Requires O(n) time.
##
## **See also:**
## * `isSorted proc<#isSorted,openArray[T]>`_
runnableExamples:
let
a = [2, 3, 1, 5, 4]
b = [1, 2, 3, 4, 5]
c = [5, 4, 3, 2, 1]
d = ["adam", "brian", "cat", "dande"]
e = ["adam", "dande", "brian", "cat"]
assert isSorted(a) == false
assert isSorted(b) == true
assert isSorted(c) == false
assert isSorted(c, Descending) == true
assert isSorted(d) == true
assert isSorted(e) == false
result = true
for i in 0..<len(a)-1:
if cmp(a[i], a[i+1]) * order > 0:
return false
proc isSorted*[T](a: openArray[T], order = SortOrder.Ascending): bool =
## Shortcut version of ``isSorted`` that uses ``system.cmp[T]`` as the comparison function.
##
## **See also:**
## * `isSorted func<#isSorted,openArray[T],proc(T,T)>`_
runnableExamples:
let
a = [2, 3, 1, 5, 4]
b = [1, 2, 3, 4, 5]
c = [5, 4, 3, 2, 1]
d = ["adam", "brian", "cat", "dande"]
e = ["adam", "dande", "brian", "cat"]
assert isSorted(a) == false
assert isSorted(b) == true
assert isSorted(c) == false
assert isSorted(c, Descending) == true
assert isSorted(d) == true
assert isSorted(e) == false
isSorted(a, system.cmp[T], order)
proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
## Produces the Cartesian product of the array. Warning: complexity
## may explode.
runnableExamples:
assert product(@[@[1], @[2]]) == @[@[1, 2]]
assert product(@[@["A", "K"], @["Q"]]) == @[@["K", "Q"], @["A", "Q"]]
result = newSeq[seq[T]]()
if x.len == 0:
return
if x.len == 1:
result = @x
return
var
indexes = newSeq[int](x.len)
initial = newSeq[int](x.len)
index = 0
var next = newSeq[T]()
next.setLen(x.len)
for i in 0..(x.len-1):
if len(x[i]) == 0: return
initial[i] = len(x[i])-1
indexes = initial
while true:
while indexes[index] == -1:
indexes[index] = initial[index]
index += 1
if index == x.len: return
indexes[index] -= 1
for ni, i in indexes:
next[ni] = x[ni][i]
result.add(next)
index = 0
indexes[index] -= 1
proc nextPermutation*[T](x: var openArray[T]): bool {.discardable.} =
## Calculates the next lexicographic permutation, directly modifying ``x``.
## The result is whether a permutation happened, otherwise we have reached
## the last-ordered permutation.
##
## If you start with an unsorted array/seq, the repeated permutations
## will **not** give you all permutations but stop with last.
##
## **See also:**
## * `prevPermutation proc<#prevPermutation,openArray[T]>`_
runnableExamples:
var v = @[0, 1, 2, 3]
assert v.nextPermutation() == true
assert v == @[0, 1, 3, 2]
assert v.nextPermutation() == true
assert v == @[0, 2, 1, 3]
assert v.prevPermutation() == true
assert v == @[0, 1, 3, 2]
v = @[3, 2, 1, 0]
assert v.nextPermutation() == false
assert v == @[3, 2, 1, 0]
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i-1] >= x[i]:
dec i
if i == 0:
return false
var j = x.high
while j >= i and x[j] <= x[i-1]:
dec j
swap x[j], x[i-1]
x.reverse(i, x.high)
result = true
proc prevPermutation*[T](x: var openArray[T]): bool {.discardable.} =
## Calculates the previous lexicographic permutation, directly modifying
## ``x``. The result is whether a permutation happened, otherwise we have
## reached the first-ordered permutation.
##
## **See also:**
## * `nextPermutation proc<#nextPermutation,openArray[T]>`_
runnableExamples:
var v = @[0, 1, 2, 3]
assert v.prevPermutation() == false
assert v == @[0, 1, 2, 3]
assert v.nextPermutation() == true
assert v == @[0, 1, 3, 2]
assert v.prevPermutation() == true
assert v == @[0, 1, 2, 3]
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i-1] <= x[i]:
dec i
if i == 0:
return false
x.reverse(i, x.high)
var j = x.high
while j >= i and x[j-1] < x[i-1]:
dec j
swap x[i-1], x[j]
result = true
proc rotateInternal[T](arg: var openArray[T]; first, middle, last: int): int =
## A port of std::rotate from c++. Ported from `this reference <http://www.cplusplus.com/reference/algorithm/rotate/>`_.
result = first + last - middle
if first == middle or middle == last:
return
assert first < middle
assert middle < last
# m prefix for mutable
var
mFirst = first
mMiddle = middle
next = middle
swap(arg[mFirst], arg[next])
mFirst += 1
next += 1
if mFirst == mMiddle:
mMiddle = next
while next != last:
swap(arg[mFirst], arg[next])
mFirst += 1
next += 1
if mFirst == mMiddle:
mMiddle = next
next = mMiddle
while next != last:
swap(arg[mFirst], arg[next])
mFirst += 1
next += 1
if mFirst == mMiddle:
mMiddle = next
elif next == last:
next = mMiddle
proc rotatedInternal[T](arg: openArray[T]; first, middle, last: int): seq[T] =
result = newSeq[T](arg.len)
for i in 0 ..< first:
result[i] = arg[i]
let n = last - middle
let m = middle - first
for i in 0 ..< n:
result[first+i] = arg[middle+i]
for i in 0 ..< m:
result[first+n+i] = arg[first+i]
for i in last ..< arg.len:
result[i] = arg[i]
proc rotateLeft*[T](arg: var openArray[T]; slice: HSlice[int, int];
dist: int): int {.discardable.} =
## Performs a left rotation on a range of elements. If you want to rotate
## right, use a negative ``dist``. Specifically, ``rotateLeft`` rotates
## the elements at ``slice`` by ``dist`` positions.
##
## | The element at index ``slice.a + dist`` will be at index ``slice.a``.
## | The element at index ``slice.b`` will be at ``slice.a + dist -1``.
## | The element at index ``slice.a`` will be at ``slice.b + 1 - dist``.
## | The element at index ``slice.a + dist - 1`` will be at ``slice.b``.
##
## Elements outside of ``slice`` will be left unchanged.
## The time complexity is linear to ``slice.b - slice.a + 1``.
## If an invalid range (``HSlice``) is passed, it raises IndexDefect.
##
## ``slice``
## The indices of the element range that should be rotated.
##
## ``dist``
## The distance in amount of elements that the data should be rotated.
## Can be negative, can be any number.
##
## **See also:**
## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for a version which rotates the whole container
## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which returns a ``seq[T]``
runnableExamples:
var a = [0, 1, 2, 3, 4, 5]
a.rotateLeft(1 .. 4, 3)
assert a == [0, 4, 1, 2, 3, 5]
a.rotateLeft(1 .. 4, 3)
assert a == [0, 3, 4, 1, 2, 5]
a.rotateLeft(1 .. 4, -3)
assert a == [0, 4, 1, 2, 3, 5]
doAssertRaises(IndexDefect, a.rotateLeft(1 .. 7, 2))
let sliceLen = slice.b + 1 - slice.a
let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
arg.rotateInternal(slice.a, slice.a+distLeft, slice.b + 1)
proc rotateLeft*[T](arg: var openArray[T]; dist: int): int {.discardable.} =
## Default arguments for slice, so that this procedure operates on the entire
## ``arg``, and not just on a part of it.
##
## **See also:**
## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range
## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which returns a ``seq[T]``
runnableExamples:
var a = [1, 2, 3, 4, 5]
a.rotateLeft(2)
assert a == [3, 4, 5, 1, 2]
a.rotateLeft(4)
assert a == [2, 3, 4, 5, 1]
a.rotateLeft(-6)
assert a == [1, 2, 3, 4, 5]
let arglen = arg.len
let distLeft = ((dist mod arglen) + arglen) mod arglen
arg.rotateInternal(0, distLeft, arglen)
proc rotatedLeft*[T](arg: openArray[T]; slice: HSlice[int, int],
dist: int): seq[T] =
## Same as ``rotateLeft``, just with the difference that it does
## not modify the argument. It creates a new ``seq`` instead.
##
## Elements outside of ``slice`` will be left unchanged.
## If an invalid range (``HSlice``) is passed, it raises IndexDefect.
##
## ``slice``
## The indices of the element range that should be rotated.
##
## ``dist``
## The distance in amount of elements that the data should be rotated.
## Can be negative, can be any number.
##
## **See also:**
## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for the in-place version of this proc
## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which rotates the whole container
runnableExamples:
var a = @[1, 2, 3, 4, 5]
a = rotatedLeft(a, 1 .. 4, 3)
assert a == @[1, 5, 2, 3, 4]
a = rotatedLeft(a, 1 .. 3, 2)
assert a == @[1, 3, 5, 2, 4]
a = rotatedLeft(a, 1 .. 3, -2)
assert a == @[1, 5, 2, 3, 4]
let sliceLen = slice.b + 1 - slice.a
let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
arg.rotatedInternal(slice.a, slice.a+distLeft, slice.b+1)
proc rotatedLeft*[T](arg: openArray[T]; dist: int): seq[T] =
## Same as ``rotateLeft``, just with the difference that it does
## not modify the argument. It creates a new ``seq`` instead.
##
## **See also:**
## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for the in-place version of this proc
## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range
runnableExamples:
var a = @[1, 2, 3, 4, 5]
a = rotatedLeft(a, 2)
assert a == @[3, 4, 5, 1, 2]
a = rotatedLeft(a, 4)
assert a == @[2, 3, 4, 5, 1]
a = rotatedLeft(a, -6)
assert a == @[1, 2, 3, 4, 5]
let arglen = arg.len
let distLeft = ((dist mod arglen) + arglen) mod arglen
arg.rotatedInternal(0, distLeft, arg.len)