Skip to content

Latest commit

 

History

History
102 lines (66 loc) · 5.3 KB

researcher.md

File metadata and controls

102 lines (66 loc) · 5.3 KB

NLP 研究方向 & 基础知识

必修

网络 & 预训练模型

Transformer 当前最风行的NLP神经网络。在大部分任务上效果超过RNN和CNN。相比于RNN,优点在于在大数据上训练时速度大幅度提升,同时允许多GPU并行。被目前几乎所有NLP模型所采用。

BERT NLP大规模预训练语言模型。区别于unidirectional language model,BERT采用Mask Language Model,以便于得到每个位置上的双向的信息。使用BERT做base model可以提高大多数下游任务的效果。

GPT & GPT-2 OpenAI出品,大规模预训练语言模型。由于BERT的Mask language model设定,使BERT很难应用在生成任务上(最近也有研究BERT做生成的,见下文)。GPT采用经典的unidirectional language model,并在大规模语料上预训练。GPT不止在生成任务上,在许多任务上都取得了很大的进步。

强化学习 & GAN

Reinforcement learning在近两年来开始在NLP领域展露头脚,学习Reinforcement Learning是十分有必要的。

GAN在NLP的许多任务上都有采用,学习GAN是必要的。建议从GAN在CV上的应用开始了解,最后阅读GAN在NLP领域上的论文。 GAN入门:https://zhuanlan.zhihu.com/p/58812258

GAN for text generation:

  • GANs for Sequences of Discrete Elements with the Gumbel-softmax Distribution
  • Generating Text via Adversarial Training
  • SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
  • Adversarial Feature Matching for Text Generation
  • Long Text Generation via Adversarial Training with Leaked Information AAAI2018

迁移学习:Transfer-Learning

Transfer-learning 的思想在NLP的许多任务的方法上都有所体现。了解Transfer-learning不会让你在读论文时在这方面碰到障碍。

迁移学习的资料合集,包括论文和代码:

reference url: http://transferlearning.xyz/

研究方向:文本生成

文本生成有很长的研究历史,并且有众多分支任务,例如:机器翻译,对话生成,文本摘要等等。文本生成也分Unconditional text generation和Conditional text generation.

Conditional text generation指根据特定的条件(例如:问题;英语文本)生成特定的结果(例如:回答;中文文本)。Uncoditional text generation是文本生成的基础方式,可以续写文章等。

了解文本生成,综述:https://arxiv.org/abs/1703.09902

子方向一:对话生成

对话生成一般指给出问题生成回复。

推荐论文:

  • Generating Informative Responses with Controlled Sentence Function (AAAI2018,清华)
  • Learning to Ask Questions in Open-domain Conversational Systems with Typed Decoders
  • Commonsense Knowledge Aware Conversation Generation with Graph Attention
  • Adversarial learning for neural dialogue generation (通过对抗学习)

子方向二:机器翻译

推荐论文:

  • Neural Machine Translation by Jointly Learning to Align and Translate
  • A Method for Stochastic Optimization
  • Neural Machine Translation of Rare Words with Subword Units
  • Attention is All You Need (Transformer)

研究方向:关系抽取

根据ACL2019接受情况,关系抽取是当下最热门的研究方向,同时也是被接收论文最多的方向。

中文综述,包含简单模型和数据介绍:https://shomy.top/2018/02/28/relation-extraction/

推荐论文:

  • 当前所有论文的baseline:Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Network
  • 2018年的State-of-the-art:Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism
  • 2016年的SOTA-效果依然很好:End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures
  • 使用GAN处理远程监督数据噪声-当前的重要研究方向之一2018AAAI:Reinforcement Learning for Relation Classification from Noisy Data
  • 联合抽取实体和关系
    • Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme
    • Going out on a limb: Joint Extraction of Entity Mentions and Relations without Dependency Trees
  • 多样例,多标签的抽取:Multi-instance Multi-label Learning for Relation Extraction
  • An interpretable Generative Adversarial Approach to Classification of Latent Entity Relations in Unstructured Sentences
  • Distant supervision for relation extraction without labeled data

研究方向:KBQA

基于知识库的问答系统。

推荐论文:

  • [ACL15]Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base
  • [ACL17]Improved Neural Relation Detection for Knowledge Base Question Answering