Skip to content

Latest commit

 

History

History
89 lines (79 loc) · 2.86 KB

DATA_PRE_README.md

File metadata and controls

89 lines (79 loc) · 2.86 KB

Dataset Preparation

Prepare the datasets before running experiments.

The project directory is $ROOT,and current directory is located at $ROOT/data to generate annotations.

  1. Download the cleaned referring expressions datasets and extract them into $ROOT/data folder:
Dataset Download URL
RefCOCO http://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip
RefCOCO+ http://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip
RefCOCOg http://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip
  1. Prepare mscoco train2014 images and Visual Genome images, and unzip the annotations. Then the file structure should look like:
$ROOT/data
|-- refcoco
    |-- instances.json
    |-- refs(google).p
    |-- refs(unc).p
|-- refcoco+
    |-- instances.json
    |-- refs(unc).p
|-- refcocog
    |-- instances.json
    |-- refs(google).p
    |-- refs(umd).p
|-- images
    |-- train2014
    |-- VG
  1. Run data_process.py to generate the annotations. For example, running the following code to generate the annotations for RefCOCO:
cd $ROOT/data
python data_process.py --data_root $ROOT/data --output_dir $ROOT/data --dataset refcoco --split unc --generate_mask
  • --dataset={'refcoco', 'refcoco+', 'refcocog', 'refclef'} to set the dataset to be processd.

​For merged refcoco and vg, we provide the pre-processed json files: merge.zip.

  1. At this point the directory $ROOT/data should look like:
$ROOT/data
|-- refcoco
    |-- instances.json
    |-- refs(google).p
    |-- refs(unc).p
|-- refcoco+
    |-- instances.json
    |-- refs(unc).p
|-- refcocog
    |-- instances.json
    |-- refs(google).p
    |-- refs(umd).p
|-- anns
    |-- refcoco
        |-- refcoco.json
    |-- refcoco+
        |-- refcoco+.json
    |-- refcocog
        |-- refcocog.json
    |-- refclef
        |-- refclef.json
    |-- flickr
        |-- flickr.json
    |-- merge
        |-- merge.json
|-- masks
    |-- refcoco
    |-- refcoco+
    |-- refcocog
    |-- refclef
|-- images
    |-- train2014
    |-- refclef
    |-- flickr
    |-- VG       
|-- weights
    |-- pretrained_weights

Pretrained Weights

We provide the pretrained weights of visual backbones on MS-COCO. We remove all images appearing in the val+test splits of RefCOCO, RefCOCO+ and RefCOCOg. Please download the following weights into $ROOT/data/weights.

Pretrained Weights of Backbone Link
DarkNet53-coco OneDrive