@@ -710,9 +710,9 @@ class Registration(ANTSCommand):
710710 --initialize-transforms-per-stage 0 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
711711 --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] \
712712 --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 \
713- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
713+ --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
714714 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] \
715- --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 \
715+ --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
716716 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
717717 >>> reg.run() # doctest: +SKIP
718718
@@ -726,9 +726,9 @@ class Registration(ANTSCommand):
726726 --initialize-transforms-per-stage 0 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
727727 --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] \
728728 --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 \
729- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
729+ --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
730730 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] \
731- --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 \
731+ --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
732732 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 1.0 ] --write-composite-transform 1'
733733 >>> reg1.run() # doctest: +SKIP
734734
@@ -742,9 +742,9 @@ class Registration(ANTSCommand):
742742 --initialize-transforms-per-stage 0 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
743743 --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] \
744744 --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 \
745- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
745+ --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
746746 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] \
747- --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 \
747+ --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
748748 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 0.975 ] --write-composite-transform 1'
749749
750750 Clip extremely low intensity data points using winsorize_lower_quantile. All data points
@@ -759,9 +759,9 @@ class Registration(ANTSCommand):
759759 --initialize-transforms-per-stage 0 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
760760 --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] \
761761 --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 \
762- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
762+ --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
763763 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] \
764- --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 \
764+ --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
765765 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 0.975 ] --write-composite-transform 1'
766766
767767 Use float instead of double for computations (saves memory usage)
@@ -773,10 +773,10 @@ class Registration(ANTSCommand):
773773 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 --interpolation Linear \
774774 --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] \
775775 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] \
776- --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use- histogram-matching 1 \
776+ --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-histogram-matching 1 \
777777 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] \
778778 --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
779- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
779+ --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
780780 --write-composite-transform 1'
781781
782782 Force to use double instead of float for computations (more precision and memory usage).
@@ -788,10 +788,10 @@ class Registration(ANTSCommand):
788788 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 --interpolation Linear \
789789 --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] \
790790 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] \
791- --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use- histogram-matching 1 \
791+ --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-histogram-matching 1 \
792792 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] \
793793 --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
794- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
794+ --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
795795 --write-composite-transform 1'
796796
797797 'collapse_output_transforms' can be used to put all transformation in a single 'composite_transform'-
@@ -823,10 +823,10 @@ class Registration(ANTSCommand):
823823 --initialize-transforms-per-stage 1 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
824824 --restore-state trans.mat --save-state trans.mat --transform Affine[ 2.0 ] \
825825 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] \
826- --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use- histogram-matching 1 \
826+ --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-histogram-matching 1 \
827827 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] \
828828 --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
829- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
829+ --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
830830 --write-composite-transform 1'
831831
832832
@@ -857,10 +857,10 @@ class Registration(ANTSCommand):
857857 --initialize-transforms-per-stage 1 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
858858 --restore-state trans.mat --save-state trans.mat --transform Affine[ 2.0 ] \
859859 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] \
860- --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use- histogram-matching 1 \
860+ --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-histogram-matching 1 \
861861 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] \
862862 --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
863- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
863+ --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
864864 --write-composite-transform 0'
865865
866866 One can use multiple similarity metrics in a single registration stage.The Node below first
@@ -885,10 +885,10 @@ class Registration(ANTSCommand):
885885 --initialize-transforms-per-stage 0 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
886886 --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] \
887887 --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 \
888- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
888+ --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
889889 --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] \
890890 --metric CC[ fixed1.nii, moving1.nii, 0.5, 4, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] \
891- --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 \
891+ --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
892892 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
893893
894894 ANTS Registration can also use multiple modalities to perform the registration. Here it is assumed
@@ -906,10 +906,10 @@ class Registration(ANTSCommand):
906906 --initialize-transforms-per-stage 0 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
907907 --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] \
908908 --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 \
909- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
909+ --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
910910 --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] \
911911 --metric CC[ fixed2.nii, moving2.nii, 0.5, 4, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] \
912- --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 \
912+ --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
913913 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
914914
915915 Different methods can be used for the interpolation when applying transformations.
@@ -923,9 +923,9 @@ class Registration(ANTSCommand):
923923 --initialize-transforms-per-stage 0 --interpolation BSpline[ 3 ] --output [ output_, output_warped_image.nii.gz ] \
924924 --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] \
925925 --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 \
926- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
926+ --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] \
927927 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] \
928- --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 \
928+ --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
929929 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
930930
931931 >>> # Test Interpolation Parameters (MultiLabel/Gaussian)
@@ -937,10 +937,10 @@ class Registration(ANTSCommand):
937937 --initialize-transforms-per-stage 0 --interpolation Gaussian[ 1.0, 1.0 ] \
938938 --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] \
939939 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] \
940- --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use- histogram-matching 1 \
940+ --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-histogram-matching 1 \
941941 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] \
942942 --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
943- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
943+ --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
944944 --write-composite-transform 1'
945945
946946 BSplineSyN non-linear registration with custom parameters.
@@ -954,9 +954,9 @@ class Registration(ANTSCommand):
954954 --initialize-transforms-per-stage 0 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
955955 --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] \
956956 --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 \
957- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --transform BSplineSyN[ 0.25, 26, 0, 3 ] \
957+ --use-histogram-matching 1 --transform BSplineSyN[ 0.25, 26, 0, 3 ] \
958958 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] \
959- --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 \
959+ --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
960960 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
961961
962962 Mask the fixed image in the second stage of the registration (but not the first).
@@ -969,10 +969,10 @@ class Registration(ANTSCommand):
969969 --initialize-transforms-per-stage 0 --interpolation Linear --output [ output_, output_warped_image.nii.gz ] \
970970 --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] \
971971 --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 \
972- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --masks [ NULL, NULL ] \
972+ --use-histogram-matching 1 --masks [ NULL, NULL ] \
973973 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] \
974974 --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
975- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --masks [ fixed1.nii, NULL ] \
975+ --use-histogram-matching 1 --masks [ fixed1.nii, NULL ] \
976976 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
977977
978978 Here we use both a warpfield and a linear transformation, before registration commences. Note that
@@ -988,10 +988,10 @@ class Registration(ANTSCommand):
988988 [ func_to_struct.mat, 0 ] [ ants_Warp.nii.gz, 0 ] --initialize-transforms-per-stage 0 --interpolation Linear \
989989 --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] \
990990 --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] \
991- --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use- histogram-matching 1 \
991+ --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-histogram-matching 1 \
992992 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] \
993993 --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 \
994- --use-estimate-learning-rate-once 1 --use- histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
994+ --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] \
995995 --write-composite-transform 1'
996996 """
997997
@@ -1155,10 +1155,9 @@ def _format_registration(self):
11551155 % self ._format_xarray (self .inputs .shrink_factors [ii ])
11561156 )
11571157 if isdefined (self .inputs .use_estimate_learning_rate_once ):
1158- retval .append (
1159- "--use-estimate-learning-rate-once %d"
1160- % self .inputs .use_estimate_learning_rate_once [ii ]
1161- )
1158+ # this flag was removed because it was never used in the ants codebase
1159+ # removed from Ants in commit e1e47994b on 2022-08-09
1160+ pass
11621161 if isdefined (self .inputs .use_histogram_matching ):
11631162 # use_histogram_matching is either a common flag for all transforms
11641163 # or a list of transform-specific flags
0 commit comments