-
Notifications
You must be signed in to change notification settings - Fork 12
/
train.py
202 lines (174 loc) · 9.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gc
import argparse
import os
import time
import datetime
import copy
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.optim import lr_scheduler
import numpy as np
import net
import config
from Dataset import SatUAVH5Dataset, SatUAVDataset
from utils import data_transforms
model_names = sorted(name for name in net.__dict__
if name.endswith("Net")
and callable(net.__dict__[name]))
parser = argparse.ArgumentParser()
parser.add_argument('--nepoch', type=int, default=25, help='number of training epochs')
parser.add_argument('--batch_size', type=int, default=16, help='batch size')
parser.add_argument('--lr', type=float, default=1e-3, help='initial learning rate')
parser.add_argument('--step', type=int, default=10, help='learning rate step size')
parser.add_argument('--margin', type=float, default=4,
help='margin of ContrastiveLoss, only useful in Siamese Network')
parser.add_argument('--data', default='raw', choices=['raw', 'aug', ], help='only raw data or with augmented data')
parser.add_argument('--model', default='FCNet', choices=model_names, help='model architecture: ' +
' | '.join(model_names) + ' (default: FCNet)')
opt = parser.parse_args()
print(opt)
def train_model(model, dataloaders, device,
criterion, optimizer, scheduler, time_str, num_epochs=25,):
print( model.__class__.__name__, 'starts to train.')# TODO: check correctness
train_start_time = time.time()
dataset_sizes = {x: len(dataloaders[x].dataset) for x in ['train', 'val']}
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
# epoch_loss = 1000 # only effective using ReduceLROnPlateau
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
epoch_start_time = time.time()
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
# scheduler.step(epoch_loss) # only effective using ReduceLROnPlateau
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
Siamese_acc = {'TP':0, 'TN':0, 'FP':0, 'FN':0}
# Iterate over data.
for i_batch, sample_batched in enumerate(dataloaders[phase]):
A = sample_batched['A'].to(device)
B = sample_batched['B'].to(device)
labels = sample_batched['label'].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward, track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(A, B)
loss = criterion(outputs, labels)
if model.__class__.__name__ in ['SiameseResNet', 'SiamesePiNet', 'SiameseSqueezeNet', 'FCSiameseNet']:
dist = F.pairwise_distance(outputs[0], outputs[1])
preds = (dist.cpu().data.numpy()[:, np.newaxis] > (opt.margin/2))*1
Siamese_acc['TP'] += np.sum(np.logical_and(labels.cpu().data.numpy()==preds, preds==1))
Siamese_acc['TN'] += np.sum(np.logical_and(labels.cpu().data.numpy()==preds, preds==0))
Siamese_acc['FP'] += np.sum(np.logical_and(labels.cpu().data.numpy()!=preds, preds==1))
Siamese_acc['FN'] += np.sum(np.logical_and(labels.cpu().data.numpy()!=preds, preds==0))
else:
preds = (outputs.cpu().data.numpy() > 0.5) * 1
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * sample_batched['A'].size(0)
running_corrects += torch.sum(torch.from_numpy(preds) == labels.cpu().long())
# For DEBUG
print("batch:%d/%d, loss:%.4f" %
(i_batch, len(dataloaders[phase]), loss.item() * sample_batched['A'].size(0)),
end=' | ', flush=True)
def rs(s):
return " ".join(str(s).replace('\n', ' ').split())
if (1+epoch) % 5 == 2:
if model.__class__.__name__ in ['SiameseResNet', 'SiamesePiNet', 'SiameseSqueezeNet', 'FCSiameseNet']:
data_str=('%s, %s, %s, %s' %
( rs(dist.cpu().data), rs(preds),
rs(labels.cpu().data), torch.sum(torch.from_numpy(preds) == labels.cpu().long())
)
)
else:
data_str = ('%s, %s, %s' % (rs(outputs.cpu().data), rs(preds), rs(labels.cpu().data)))
print(data_str)
# save memory to avoid memory usage exceeds limitation on Dalma
del A, B, outputs, loss, labels
if config.ENV == "Dalma":
torch.cuda.empty_cache()
gc.collect()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
if model.__class__.__name__ in ['SiameseResNet', 'SiamesePiNet', 'SiameseSqueezeNet', 'FCSiameseNet']:
print("\n%s, TPR(Paired acc):%.2f, TNR(Unpaired acc):%.2f" %
(phase, Siamese_acc['TP']/(Siamese_acc['TP']+Siamese_acc['FN']),
Siamese_acc['TN']/(Siamese_acc['TN']+Siamese_acc['FP']),), end=' | ')
print('\n{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
epoch_time_elapsed = time.time() - epoch_start_time
print('Epoch complete in {:.0f}m {:.0f}s'.format(
epoch_time_elapsed // 60, epoch_time_elapsed % 60))
print()
train_time_elapsed = time.time() - train_start_time
print('Training complete in {:.0f}m {:.0f}s'.format(
train_time_elapsed // 60, train_time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# save model
torch.save(model.state_dict(), os.path.join(config.MODEL_DIR, '%s_%s_final.pth'%(opt.model, time_str)))
torch.save(best_model_wts, os.path.join(config.MODEL_DIR, '%s_%s_best.pth'%(opt.model, time_str)))
# load best model weights and return
model.load_state_dict(best_model_wts)
return model
if __name__ == '__main__':
# Initilization models and data
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
if opt.model in ['SiameseResNet', 'SiameseSqueezeNet']:
num_workers = 0
model = net.SiameseResNet() if opt.model == 'SiameseResNet' else net.SiameseSqueezeNet()
model.to(device)
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=0.9)
lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.step, gamma=0.1) # Decay LR by a factor of 0.1 every opt.step epochs
criterion = net.ContrastiveLoss(margin=opt.margin)
# optimizer = optim.Adam(model.parameters(), lr=opt.lr)
image_datasets = {
x: SatUAVDataset(csv_meta=f'{opt.data}.csv' if x=='train' else 'raw.csv',
csv_file=f'{x}.csv',
root_dir=config.DATA_DIR,
transform=data_transforms['norm']) for x in ['train', 'val']
}
elif opt.model == 'FCNet':
num_workers = 1
feature_file = config.FULL_960x720_FEATURE_RES34
model = net.FCNet()
model.to(device)
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=0.9)
lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.step, gamma=0.1) # Decay LR by a factor of 0.1 every opt.step epochs
criterion = nn.BCELoss()
image_datasets = {x: SatUAVH5Dataset(csv_file=os.path.join(config.MID_PRODUCT, f'{x}.csv'),
feature_file=feature_file) for x in ['train', 'val']}
elif opt.model == 'FCSiameseNet':
num_workers = 1
feature_file = config.FULL_960x720_FEATURE_RES34
model = net.FCSiameseNet()
model.to(device)
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=0.9)
lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.step, gamma=0.1) # Decay LR by a factor of 0.1 every opt.step epochs
criterion = net.ContrastiveLoss(margin=opt.margin)
image_datasets = {x: SatUAVH5Dataset(csv_file=os.path.join(config.MID_PRODUCT, f'{x}.csv'),
feature_file=feature_file) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=opt.batch_size,
shuffle=True, num_workers=num_workers) for x in ['train', 'val']}
time_str = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M")
print(model.__class__.__name__, 'is created at:', time_str)
# Training
print(model)
model = train_model(model, dataloaders, device,
criterion, optimizer, lr_scheduler, time_str,
num_epochs=opt.nepoch)