-
sample space -
$\Omega$ set of all possible outcomes of experiment-
$\omega \in \Omega$ - sample outcome -
$E \subset \Omega$ - Event
-
-
definitions
- Let
$A_i \subset \Omega$ , the sets are increasing if$A_{i} \subset A_{i + 1}$ , and$lim_{n \rightarrow \infty} = \bigcup_i A_i$ - If
$A_i \supset A_{i + 1}$ , then the sets are decreasing and$lim_{n \rightarrow \infty} = \bigcap_i A_i$
- If
-
probability
- A function
$f : \Omega \rightarrow [0,1]$ is a probability measure or a distribution if- For each
$A \subset \Omega$ ,$f(A) \geq 0$ (non-neg) $f(\Omega) = 1$ - Given $(A_i)i, A_i \cap A_j = \emptyset, i \not = j, f(\bigcup{i} A_i) = \Sigma_i f(A_i)$
- For each
-
properties
-
$f(\emptyset) = 0$ , take$\Omega = \Omega + \emptyset, 1 = f(\Omega \cup \emptyset) = f(\Omega) + f(\emptyset)$
-
- A function
- Let
-
independence
- Let
$A, B \subset \Omega$ , then$A, B$ are independent, if$f(A \cap B) = f(A)f(B)$ - Disjoint events
$A, B, A \cap B = \emptyset$ are not independent,$0 = f(\emptyset) = f(A \cap B) = f(A)f(B) > 0$
- Let
-
conditional prob.
- Let
$A, B \subset \Omega$ , then$\mathbb{P}(A | B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$
- Let
-
Bayes
- Let
$A_1, \cdots, A_k$ be a partition of$\Omega$ , that is$A_i$ are disjoint, and$\Omega \subset \cup_i A_i$ $\forall B \subset \Omega, \mathbb{P}(B) = \Sigma_i \mathbb{P}(B | A_i) \mathbb{P}(A_i)$
-
theorem
- Using the same partition above,
$\mathbb{P}(A_i | B) = \mathbb{P}(A_iB) / \mathbb{P}(B) = \frac{\mathbb{P}(B | A_i) \mathbb{P}(A_i)}{\Sigma_i \mathbb{P}(B | A_i) \mathbb{P}(A_i)}$
- Using the same partition above,
- Let
-
problems
- Let
$A_i$ be monotone decreasing collection, i.e$A_i \supset A_{i + 1}$ ,$lim_{n \to \infty} \mathbb{P}(A_n) \rightarrow \mathbb{P}(A)$ - Toss coin until 2 heads, probability that
$k$ tosses are needed-
$k - 1$ positions,$k - 1 / 2^k$ ?
-
- Suppose
$\mathbb{P}(A_i) = 1, \forall i$ , prove$\mathbb{P}(\bigcap_i A_i)$ -
$P(A_1 | A_2) = P(A_1 A_2)$ , notice$A_i = \Omega$ , i.e$A\subset \Omega \land \mathbb{P}(\Omega) \leq \mathbb{P}(A_i) \rightarrow \Omega \subset A_i$
-
- Monty Hall Problem
- Intuition, first choice
$2/3$ chance picked empty door, monty opens, intuition affirmed -
$\Omega = {(\omega_1, \omega_2) : \omega_i : {1,2,3 }}$ , where$\omega_1$ is prize-door,$\omega_2$ is door opened - Assuming uniform dist. prob. that door-opened is prize door is
$1/3$ , on first selection there is$1/3$ chance, on second$1/2$
- Intuition, first choice
- Event space
$\Omega = {c_1, c_2 : c_i \in {1,2}}$ , suppose$c_1$ is front, and is$1$ , total of 3 chances of happening$2/3$ chance back is green
- Let
-
Inadequacy of rationals,
- no
$p \in \mathbb{Q}, p = \sqrt{2}$ ,- otherwise fix
$p, q \in \mathbb{Z}$ , where$(p,q) = 1$ , then$\frac{p}{q}^2 = 2$ , and$p^2 = 2q^2$ , naturally,$2 | p^2$ , and$2 | p$ , then$4 | 2q^2$ , thus$2 | q^2$ , and$2 | q$ , and$(p, q) = 2$
- otherwise fix
- Let
$A = {p : \mathbb{Q}: p^2 < 2}$ , and$B = {q : \mathbb{Q} : q^2 > 2}$ , then$A, B$ have no largest (resp. smallest) element- Let
$A = {p : p^2 < 2} \subset \mathbb{Q}$ ,$A$ contains no largest element. - For
$p = max(A)$ , construct$q = p - \frac{p^2 - 2}{p + 2} = \frac{2p + 2}{p + 2}$ ,$2 - q^2 = 2 - \frac{(2p + 2)^2}{(p + 2)^2} = \frac{2(p + 2)^2 - (2p + 2)^2}{(p + 2)^2}$ , and$2p^2 + 8p + 8 - 4p^2 - 8p - 4 = 4 - 2p^2 = 2(2 - p^2) > 0$ , and$q \in A$ , but$q > p$
- Let
- For
$p = min(B)$ - Consider
$q = p - \frac{p^2 - 2}{p + 2}$ ,$q < p$
- Consider
-
$p^2 < 2$ , then$(p + a)^2 < 2$ ?,$p^2 + 2pa + a^2 < 2$ ,and$2pa + a^2 = a(2p + a) < 2 - p^2$
- no
-
bounded sets
- Suppose
$E \subset S$ , where$S$ is an ordered set.-
$E$ is bounded above if$\exists \beta \in S$ , where$\forall x \in E, x \leq \beta$ -
$E$ is bound below if$\exists \beta \in S$ , where$\forall x \in E, x \geq \beta$
-
-
least upper bound (supremum)
- Denote
$\beta L \iff \forall x \in E, x \leq \beta$ , then$min(L)$ (if it exists) is the lub of$E$ if there
- Denote
-
greatest lower bound(infimum)
- Define similarly, take
$max(L)$ (if it exists)- When would it not exist?
$E$ has no bounds, consider$B$ , notice$\beta \in A$ is lower bound, however, there is no maximal element of$A$ , so a glb. does not exist
- When would it not exist?
- Define similarly, take
-
least upper bound property
- Property of
$S$ (ordered set), if$E \subset S$ ,$E \not = \emptyset$ , and$\exists \alpha \in S, \forall x \in E, x \leq \alpha$ , then$sup(E) \in S$ (it exists)- Similar case for glb
- Property of
-
$\mathbb{Q}$ does not have lub/glb- proprty,$A$ is non-empty + bound above, but does not have sup - Let
$S$ be ordered set w/ lub prop., take$B \subset S, B \not= \emptyset$ , and$\exists \alpha \in S, \forall x \in B, x \geq \alpha$ , let$L$ be set of all lower bounds of$B$ , then$\alpha = sup(L) \in S$ , and$\alpha = inf(B)$ - Notice,
$\alpha \in L$ , thus$L \not= \emptyset$ , and$\beta = sup(L) \in S$ . Furthermore, take$\beta \in B$ , then, fix$x \in L$ , then$x \leq \beta$ ,$\beta$ is upper-bound of$B$ , thus$\exists \alpha = sup(L) \in S$ (lub-property). - Take
$\alpha' > \alpha$ , where$\forall x \in B, x \leq \alpha'$ , then$\alpha' \in L$ , and$\alpha$ is not an upper-bound of$L$ (contradiction), thus$\alpha' \leq \alpha$
- Notice,
- Suppose
-
ordered field
- Field
$S$ which is also ordered set, s.t$x, y, z \in S, y < z \to x + y < x + z$ $x, y > 0 \to xy > 0$
-
properties
- If
$x > 0 \rightarrow -x < 0$ - Notice
$x > 0 \rightarrow 0 = -x + x > -x + 0 = -x$
- Notice
- If
$x \not= 0$ ,$xy = x \to y = 1$ $1 = x (1/x) = (1/x)xy = (1/x x) = y$
- If
$x > 0 \land y < z \to xy < xz$ $x(z - y) > 0 \rightarrow xz - xy > 0 \rightarrow xz > xy$
- If
$x < 0 \land y < z$ then$xy > xz$ - inverse of above, show
$-x(z - y) = -xz + xy > 0$
- inverse of above, show
- If
$x \not= 0$ ,$x^2 > 0$ -
$x > 0$ apply axiom of ordered field - If
$x < 0 \rightarrow (-x) > 0 \rightarrow (-x)^2 = x^2 > 0$
-
- If
$0 < x < y$ then$0 < 1/x < 1/y$ -
$(1/y) > 0$ (contradiction), suppose otherwise, then$y(1/y) < 0 \rightarrow false$ -
$(1/y) < (1/x)$ ,$x < y \rightarrow x(1/x)(1/y) < y(1/y)(1/x) = 1/y < 1/x$
-
- If
- Field
-
There exists a set
$R \supset \mathbb{Q}$ that has the lub-property- If
$x \in R, y \in R$ , and$x > 0$ , then there is a positive integer$n$ , where$nx > y$ (archimedian property of$\mathbb{R}$ )- Suppose otherwise, then consider
$x \in L = {nx : n \in \mathbb{N}} \not= \emptyset$ , and$y \geq nx, \forall x$ . Therefore, via the lub property$\alpha \in sup(L)$ exists. Notice, fix$\beta \in L$ , where$\alpha - \beta \leq x$ (notice, that this exists is triv.- otherwise, continue incrementing). Notice,
$\beta = nx$ , thus consider$(n + 1)x > \alpha$ (contradiction) - finding
$\beta$ ? where$\alpha - \beta \leq x$ - Consider
$\alpha - x < \alpha$ , thus$\exists m, mx > \alpha - x$ (how to find$\beta$ )
- otherwise, continue incrementing). Notice,
- Suppose otherwise, then consider
- If
$x, y \in \mathbb{R}$ ,$x < y$ , then there exists$p \in \mathbb{Q}$ , where$x < p < y$ ($\mathbb{Q}$ is dense in$\mathbb{R}$ )-
Intuition
- If
$y > x$ , then$(y - x) > 0$ -> we can expand this diff to be as large as we want, say 1. Then$\exists n \in \mathbb{Z}, ny - nx > 1$ , thus WTS$\exists m \in \mathbb{Z}, m - 1 < nx < m$ ,- Identify set of
$\mathbb{Z}$ , where$m' < nx$ , and take$m = m' + 1$
- Identify set of
- If
-
Intuition
- If
-
Proof of n-th root, take
$x \in \mathbb{R}$ ,$\exists y \in \mathbb{R}, y^n = x$ . I.e $\forall x \in \mathbb{R}, x > 0 \rightarrow \forall n \in \mathbb{Z}{>0}, \exists y \in \mathbb{R}{>0}, y^n = x$ (and each such$y$ is unique, denoted$^n\sqrt{x}$ )- Take
$\frac{x}{1 + x} = L = {y \in \mathbb{R}: y^n < x}$ , notice,$x$ is upper-bound of$L$ , thus$\alpha = sup(L)$ exists. Notice$(1 + x)^n > x^n$ -
$\alpha^n < x$ - Intuitively, want to show that if
$y^n < x$ (where$y$ is $sup(L)$)$\exists y' > y, y'^{n} < x$ , fix$1 > \epsilon > 0$ ,- Then
$(y + \epsilon)^n - y^n < \epsilon n(y + \epsilon)^{n - 1} < \epsilon n(y + 1) < x - y^n$ - Thus
$\epsilon < \frac{x - y^n}{n(y + 1)^{n - 1}}$ , apply similar logic above, i.e$$y^n - (y - k)^n = (y - (y - k))(y^{n - 1} + y^{n - 2}(y -k) + \cdots + (y -k)^{n - 1}) < kny^{n -1} < y^n - x^n$$ - Thus,
$0 < k < \frac{y^n - x^n}{ny^{n - 1}}$ , and$(y - k) < y$ , and$(y - k)$ is an upper-bound of$E$ , a contradiction
- Then
- Intuitively, want to show that if
-
$\alpha^n > x$ - Show there exists
$k > 0, y - k$ is upper bound of$E$ (contradicting earlier statement)
- Show there exists
-
- Take
-
If
$a, b \in \mathbb{R}$ , and$n \in \mathbb{Z}$ , then$(ab)^{1/n} = a^{1/n}b^{1/n}$ - Let
$\alpha = a^{1/n}, beta = b^{1/n} \in \mathbb{R}$ , that$\alpha, \beta \in \mathbb{R}$ exist / are unique and real is proven above. - Then
$ab = \alpha^n \beta^n = (\alpha \beta)^n$ , then$(ab)^{1/n} = \alpha \beta = a^{1/n} b^{1/n}$
- Let
-
decimals
- Take
$n_0 \leq x$ , where$n_0 \in \mathbb{Z}$ is the largest such integer- Then take
$n_i \leq x - \Sigma_{j < i} \frac{n_i}{10^i}$ (be the largest such integer)
- Then take
- Let
$E = {\alpha = \Sigma_{j < i} \frac{n_i}{10^i}}$ , then$x = sup(E)$
- Take
-
complex field
- Let
$\alpha \in \mathbb{C}$ , then$\alpha = (a, b)$ (ordered pair)- Operations,
$(a, b) + (c, d) = (a + c, b + d)$ ,$(a, b)(c, d) = (ac - bd, ad + bc)$
- Operations,
-
field axioms
- Take
$(0, 0)$ as additive identity, and$(1, 0)$ as multiplicative identity -
addition grp.
- Triv,
$-(a, b) = (-a, -b)$ ,$(a, b) + (0, 0) = (a, b)$ (inverse) -
$(a, b), (c, d) \in \mathbb{C} \rightarrow (a, b) + (c, d) = (a + c, b + d) = (c + a, d + b) = (c,d) + (a, b)$ (commutative)- Fix
$(a,b), (c, d), (e, f) \in \mathbb{C}$ , then$(a, b) + ((c, d) + (e, f)) = (a, b) + (c + e, d + f) = (a + c + e, b + d + f) = ((a, b) + (c, d)) + (e, f)$
- Fix
- Triv,
-
multiplicative
- Arithmetic
- Take
-
$i = (0, 1)$ ,$(0, 1)^2 = (-1, 0)$ -
conjugation
- Let
$z \in \mathbb{C}, z = a + bi, \overline{z} = a - bi$ $\overline{z + w} = \overline{z} + \overline{w}$ $\overline{zw} = \overline{z} \overline{w}$ -
$\overline{z} + z = 2Re(z)$ (similar for$z - \overline{z}$ )
- Let
-
$|z| = \sqrt{z \overline{z}}$ -
$|z| > 0$ , unless$(a, b) = (0, 0)$ , naturally$z \overline{z} > 0$ , thus$\sqrt{x}$ exists (see above) $|\overline{z}| = \sqrt{\overline{\overline{z}} \overline{z}} = \sqrt{z \overline{z}} = |z|$ $|zw| = |z||w|$ -
$|Re(z)| \leq |z|$ (triangle inequality)-
$z = a + bi$ , then$Re(z) = a$ , then$|Re(z)| = \sqrt{aa} = a \leq \sqrt{a^2 + b^2} = |z|$
-
-
$|z + w| \leq |z| + |w|$ $$|z + w|^2 = z\overline{z} + w\overline{z} + \overline{w}z + \overline{w}w = z \overline{z} + w \overline{w} + 2 Re(z \overline{w}) \leq |z|^2 + |w|^2 + 2|z \overline{w}| = |z|^2 + |w|^2 + 2|z||w| = (|z| + |w|)^2$$
-
-
schwartz
- If
$a_1, \cdots, a_n, b_1, \cdots, b_n \in \mathbb{C}$ , then$|\Sigma_i a_i \overline{b_i}|^2 \leq \Sigma_i |a_i|^2 \Sigma_i |b_i|^2$ (i.e$|xy|\leq |x | |y |$ ) -
solution 1
- Set
$A = \Sigma_i |a_i|^2, B = \Sigma_i |b_i|^2, C = \Sigma_i a_i \overline{b_i}$ - Consider
$\Sigma_i |Ba_i - Cb_i|^2 = \Sigma_i (Ba_i - Cb_i)(B\overline{a_i} - \overline{C b_i}) = B^2\Sigma_i |a_i|^2 - B\overline{C}\Sigma_i a_i \overline{b_i} - CB\Sigma_ib_i \overline{a_i} + |C|^2 \Sigma_i |b_i|^2 = B^2A - B|C|^2 = B(AB - |C|^2) > 0$ . Thus$(AB - |C|^2) > 0$ (as desired)
- Set
-
solution 2
- If
- Let
-
Order
$<$ on set$E$ is relation (i.e$\subset E \times E$ )- Where
$x < y \lor x = y \lor y < x$ (where$\lor$ is XOR) (def) -
$x < y \land y < z \rightarrow x < z$ (transitive)
- Where
-
problems
- Fix
$b > 1$ - Let
$E \not= \emptyset$ is ordered, suppose$\alpha = lub(E)$ ,$\beta = glb(E)$ - Notice
$\forall x \in E, \alpha \leq x \land x \leq \beta \rightarrow \alpha \leq \beta$
- Notice
- Let
$A \subset R, A \not= \emptyset$ , where$A$ is bounded below (thus$\alpha = inf(A) \in R$ ), let$-A = {-x : x \in A}$ . Prove$inf(A) = -sup(-A)$ - Take
$\alpha = inf(A)$ , notice,$-A$ is then bounded above, i.e$-\alpha$ , as$\forall x \in A, x \geq \alpha \rightarrow -\alpha \geq -x$ , take$\beta = sup(-A)$ , and$\beta \leq -\alpha$ (def of lub). Similar case follows for$-\beta \leq \alpha \rightarrow \beta \geq -\alpha \rightarrow \beta = -\alpha$
- Take
- Fix
$b > 1$ - If
$m, n, p, q \in \mathbb{Z}$ ,$n > 0, q > 0$ , and$r = m/n = p/q$ , thus$(b^m)^{1/n} = b^{m/n}$ -
$(b^m)^{1/n} = (b^p)^{1/q}$ , notice$((b^m)^{1/n})^{nq} = b^{mq} = b^{np} = ((b^{p})^{1/q})^{nq}$ , thus since$nq$ -th roots are unique$(b^{m})^{1/n} = (b^p)^{1/q}$ - Let
$r, s \in \mathbb{Q}, b^{r + s} = b^r + b^s$ - Let
$r = m/n, s = p/q$ , then$b^{r + s} = b^{\frac{mp + nq}{np}} = (b^{mp + nq})^{1/np} = (b^{mp}b^{nq})^{1/np} = b^{m/n}b^{q/p} = b^rb^s$ - Notice, the 2nd equality follows from the above definition, and the 2nd to last follows from the proof that
$ab^{1/n} = a^{1/n}b^{1/n}$
- Notice, the 2nd equality follows from the above definition, and the 2nd to last follows from the proof that
- Let
- If
$x \in \mathbb{R}$ , define$B(x) = {b^t: t \leq x, t \in \mathbb{Q}}$ - When
$r \in \mathbb{Q}, b^r = sup(B(r))$ - Notice,
$b^{r - 1} \in B(r)$ , thus$B(r) \not= \emptyset$ , furthermore,$b^r$ is an upper-bound, thus$sup(B(r))$ exists, naturally$sup(B(r)) \leq b^r$ . Furthermore, since$b^r \in B(r)$ ,$b^r \leq sup(B(r))$ , thus$b^r = sup(B(r))$
- Notice,
- Naturally, for
$x \in \mathbb{R}$ ,$B(r) \not= \emptyset$ ($\mathbb{Q}$ is dense in$\mathbb{R}$ ), similarly,$B(r)$ has an upper-bound (apply archimedian prop. for some$r \in \mathbb{Q}$ ), and$sup(B(x))$ exists
- When
- Prove that
$b^{x + y} = b^x b^y$ $\forall x, y \in \mathbb{R}$ - Notice, for
$t \in \mathbb{Q}, t \leq x + y \rightarrow \exists s \leq x, r \leq y, t = s + r \leq x + y$ - Trivial, i.e take
$t - y, x$ (apply density of rationals) set this as$r, s = t - r$
- Trivial, i.e take
- Strategy
- Show that
$B(x + y) = B(x)B(y)$ - Fix,
$\alpha \in B(x + y)$ , then$\alpha = b^t, t \in \mathbb{Q}, t = r + s \leq x + y$ , and$b^r \in B(x), b^s \in B(y), b^{r + s} \in B(x)B(y)$ - Fix
$b^r \in B(x), b^s \in B(y)$ , naturally$b^rb^s = b^{r + s} \in B(x + y)$ ($r + s \leq x + y$ )
- Fix,
- Then show that
$sup(A) = sup(B)sup(c)$ (for all such sets having the above property)- Consider
$\alpha \in B(x)B(y)$ , then$\alpha = b^rb^s, b^r \in B(x), b^s \in B(y)$ , thus$b^rb^s \leq sup(B(x))sup(B(y))$
- Consider
- Show that
- Notice, for
-
- If
- Fix
$b > 1$ ,$y > 0$ , and prove that there is a unique$x \in \mathbb{R}$ ,$b^x = y$ - For
$n \in \mathbb{Z}_{>0}$ ,$b^n - 1 \geq n(b - 1)$ - Notice
$b^n - 1 = (b - 1)(b^{n - 1} + \cdots + 1) \geq (b - 1)n$ , notice,$\forall n \in \mathbb{Z}_{\geq 0}, b^n \geq 1$ (from hyp.) -
$b' - 1 \geq n(b'^{1/n} - 1)$ - Take above w/
$b' = b^{1/n}$
- Take above w/
- If
$t > 1$ , and$n > \frac{b - 1}{t - 1}$ - Apply above, i.e
$(t - 1)n < b -1 < n(b^{1/n} -1)$
- Apply above, i.e
- If
$w \in \mathbb{R}$ , where$b^w > y$ , then$b^{w - 1/n} > y$ - Notice
$\frac{b^w}{y} > 1$ , thus apply above to find$n$ , specifically$\frac{b -1}{\frac{b^w}{y} - 1}$ , thus$b^{1/n} < b^{w}/y$ , and $y < b^w/b^{1/n}
- Notice
- If
$b^w < y$ , then there exists$n$ , where$b^{w + 1/n} < y$ ,- Same principle w/
$t = \frac{y}{b^w}$
- Same principle w/
- Let
$A = {w : b^w < y}$ , and show that$x = sup(A), b^x = y$ - Suppose
$b^x < y$ , then$x + 1/n \in A$ (contradiction) - Similarly
$b^x > y$ is also a contradiction, thus$b^x = y$
- Suppose
- Uniqueness of
$x$ ?- Then
$b^{x - x'} = 1$ , thus$x - x' = 0$ , and$x = x'$
- Then
- Notice
- For
- No order can be defined on
$\mathcal{C}$ - Notice,
$1 > 0$ , thus$-1 < 0$ , and$i < 0$ , however,$i^2 < 0$ ? - Suppose
$i > 1$ , then$-1 > 0$ , thus$0 > 0$ ? ($1 > 0$ )
- Notice,
- Suppose
$z = a + bi$ ,$w = c + di$ , define$z < w$ if$a < c$ or$a = c$ , and$b < d$ - Notice, fix
$z, w \in \mathbb{C}$ , then WLOG$a > c$ ($z > w$ ) or$a = c$ ,$b = d$ or WLOG$b < d$ - Suppose
$x < w$ , and$w < z$ (transitive)- Notice if
$w.1 = z.1$ , then, since$x.1 \leq w.1$ $x.1 \leq z.1$ (thus$x < z$ )
- Notice if
- Subset w/ no lub?
- Notice, fix
- If
$z \in \mathbb{C}$ , prove that there exists$r \geq 0$ , and$w \in \mathbb{C}, |w| = 1$ - Suppose
$z = a + bi$ , then$w = \frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{a^2 + b^2}}i$
- Suppose
- Suppose
$k \geq 3$ ,$\bold{x}, \bold{y} \in \mathbb{R}^k$ ,$|\bold{x} - \bold{y} = d > 0$ , and$r > 0$ , then-
$2r > d$ , there are infinitely many$\bold{z} \in \mathbb{R}^k$ , where$|\bold{z} - \bold{x}| = | \bold{z} - \bold{y}| = r$ - Consider all scalar multiples?
-
$2r = d$ - Then
$|z - y| + |x - z| = d = |x - y|$ - Thus there is only one soln
- Then
-
$2r < d$ - Cannot be satisfied (triangle ineq. violated)
-
- Fix
-
cardinalities
- For $n \in \mathbb{Z}{>0}$, let $J_n$ be the set ${1, \cdots, n }$, let $J = \cup{n \in \mathbb{Z}_{>0}} J_n$
- For set
$A$ -
$A$ is finite if$\exists n \in \mathbb{Z}_{n}$ , where$A \sim J_n$ ($A$ is isomorphic to)$J_n$ -
$A$ is infinite if$A$ is not finite -
$A$ is countable if$A \sim J$ -
$A$ is uncountable if$A$ is neither finite nor countable -
$A$ is at most countable if$A$ is not uncountable
-
- Every infinite subset of a countable set
$A$ is countable - Countable union over countable sets is countable
- Let
$A$ be a countable set, and let$B_n = A^n = {(a_1, \cdots, a_n) : a_i \in A }$ , then$B_n$ is countable-
$B_1 = A$ thus$n = 1$ holds. Assume that$B_n$ is countable, then$B_{n + 1} = \bigcup_{a \in A} \bigcup_{b \in B_n} (b_1, \cdots, b_n, a)$ , thus$B_{n +1}$ is a countable union of countable sets, and is thus countable
-
- The set of all rationals is countable
- Apply above to
$\mathbb{Z}$ , i.e$\mathbb{Q} = \mathbb{Z} \times \mathbb{Z}$
- Apply above to
- Let
$X$ be a set, and$x \in X$ is a point-
$X$ is a metric space if for$p, q \in X$ ,$\exists d(p, q) \in \mathbb{R}$ where-
$d(p, q) > 0$ ($p \not= q$ ) or$d(p,p) = 0$ $d(p, q) = d(q, p)$ $d(p, q) \leq d(p, r) + d(r, q)$
-
-
-
$k$ -cell -$A \subset \mathbb{R}^k$ , where$x \in A \rightarrow \forall i, a_i \leq x_i \leq b_i$ (i.e each coord lines w/in given bounds) -
$A \subset \mathbb{R}^k$ is a ball centered at$x \in \mathbb{R}^k$ , where$\forall y \in A, |y - x| < r$ (open),$|y - x| \leq r$ (closed) - Balls are convex
- Let
$\alpha, \beta \in A$ , where$A$ is a ball around$x \in \mathbb{R}^k$ , w/ radius$r$ , then$|\alpha - x| \leq r$ and$|\beta - x| \leq r$ - Consider
$|\lambda \alpha - (1 - \lambda)\beta - x| \leq \lambda | \alpha - x| + (1 - \lambda)|\beta - x| \leq r$ (notice,$0 < \lambda < 1$ )
- Let
- Same results hold for k-cells.
- take
$\alpha, \beta \in A$ , then$\forall i, a_i \leq \alpha_i \leq b_i, a_i \leq \beta_i \leq b_i$ , then$a_i \leq \lambda \alpha_i + (1 - \lambda)\beta_i \leq b_i$
- take
- Let
$X$ be a metric space-
neighbourhood -
$N_r(p) = {x \in X : |p - x| < r } \subset X$ , where$r > 0$ -
limit point -
$E \subset X$ , then$p$ is limit point of$E$ , if$\forall r \in \mathbb{R}_{> 0}, N_r(p) \backslash {p} \cap E \not= \emptyset$ every neighbourhood of$p$ intersects$E$ (outside of itself)-
intuition -
$p$ is as close to being a part of$E$ as one can get,$p \in \overline{E}$
-
intuition -
- If
$p \in E$ , and$p$ is not a limit point of$E$ , then$p$ is an isolated point- I.e there is a neighbourhood of
$p$ that does not intersect$E$ apart from itself - Think of a set of finite points, each spread
$r > 0$ away from each other
- I.e there is a neighbourhood of
-
$E$ is closed if all limit points of$E$ are in$E$ -
$p \in E$ is an interior point of$E$ , if$\exists r > 0, N_r(p) \subset E$ -
$E$ is open if$\forall p \in E$ $p$ is an interior point -
$E$ is perfect if$E$ is closed, and if every point of$E$ is a limit point-
$E$ must be infinite? Closed ball in$\mathbb{R}^k$
-
-
$E$ is bounded if$\exists M \in \mathbb{R}, q \in X$ , where$\forall x \in X, d(x, q) < M$ -
$E \subset X$ is dense in$X$ if$\forall x \in X$ $x$ is a limit point of$E$ or$x \in E$
-
neighbourhood -
- Every neighbourhood is an open set
- Consider
$N_r(p)$ , where$r > 0$ . Fix$q \in N_r(p)$ , then$d(q, p) < r$ , thus$r - d(q, p) = \epsilon > 0$ . Notice,$\forall x \in N_{\epsilon}(q)$ ,$d(q, x) < \epsilon$ , thus$d(p, q) < d(p, q) + d(q, x) < r$ , and$x \in N_r(p)$ , thus$N_{\epsilon}(q) \subset N_r(p)$ , and$q$ is interior.
- Consider
- If
$p$ is a limit point of a set$E$ , then every neighbourhood of$p$ contains infinitely many points of$E$ - Suppose
$p$ is a limit point of$E$ , then consider$N_r(p)$ where$r > 0$ , naturally (since$p$ is a limit point),$N_r(p) \cap E \backslash {p} \not = \emptyset$ , if this is finite, i.e$a_1, \cdots, a_n$ , take$r' < min_{a_i}(d(p, a_i))$ , and$N_{r'}(p) \cap E \backslash {p} = \emptyset$ (contradiction).
- Suppose
- A set
$E$ is open iff its complement is closed- Forward
- Suppose
$E$ is open, and suppose$x$ is a limit point of$E^c$ , that is,$\forall r > 0$ ,$N_r(x) \backslash {p} \cap E^c \not = \emptyset$ , and$x \not \in E$ ($x$ is not interior point), thus$x \in E^c$ , and$E^c$ is closed
- Suppose
- Reverse
- Suppose
$E^c$ is closed. Consider$p \in E$ , then$\exists r > 0$ , where$N_r(p) \cap E^c = \emptyset$ ($p$ is not a limit point of$E^c$ ), thus$N_r(p) \subset E$ , and$p$ is an interior point. Thus$E$ is open
- Suppose
- Forward
- Let
${G_{\alpha}}$ be a collection of open sets, then$B = \cup_{\alpha} G_{\alpha}$ is open- Suppose
$x \in B$ , then$\exists \alpha, x \in G_{\alpha}$ , thus$\exists r > 0$ , where$N_r(x) \subset G_{\alpha} \subset B$ , and$B$ is open.
- Suppose
- Let
${G_{\alpha}}$ be a collection of closed sets, then$\cap_{\alpha} G_{\alpha}$ is closed.- consider
$(\cap_{\alpha} G_{\alpha})^c = \cup_{\alpha} G_{\alpha}^c$ is open, thus$\cap_{\alpha} G_{\alpha}$ is closed.
- consider
- For any finite collection of open sets
$G_1, \cdots, G_n$ $\cap_i G_i$ is open.- Suppose
$x \in \cap_i G_i$ , then$\forall i \exists r_i > 0, N_{r_i}(x) \subset G_i$ (each$G_i$ is open), then take$r = min_i(r_i)$ , and$N_r(x) \subset G_i, \forall i$ , thus$N_r(x) \subset \cap_i G_i$ - Notice, above does not hold for infinite collections, i.e
$\cap_{n \in \mathbb{N}} (-1/n, 1/n) = 0$ (closed)
- Suppose
- If
$X$ is metric space, and$E \subset X$ , then$\overline{E} = E \cup E'$ , where$E'$ is the set of all limit-points of$E$ -
$\overline{E}$ is closed -
$\overline{E} = E$ iff$E$ is closed -
$\overline{E} \subset F$ for every closed$F \subset X$ where$E \subset F$ - fix
$F$ (closed), where$E \subset F$ - WTS: a limit point of
$E$ is a limit point of$F$ , and is thus in$F$
- WTS: a limit point of
- Suppose
$x$ is a limit point of$E$ , then$\forall r > 0$ ,$N_r(x) \backslash {x} \cap E \not= \emptyset$ , similarly,$N_r(x) \backslash {x} \cap F \not= \emptyset$ , thus$x$ is a limit point of$F$ , and$x \in F$ . Thus$\overline{E} = E \cup E' \subset F$
- fix
-
- Let
$E \not= \empty, E \subset \mathbb{R}$ , where$E$ is bound above (thus$sup(E) \in \mathbb{R}$ ), then$y \in \overline{E}$ - Suppose otherwise, then
$\exists r > 0, N_r(y) \backslash {y} \cap E = \emptyset$ , as such,$y - r' < y \in N_r(y)$ , and$y - r'$ is upper-bound (contradiction)
- Suppose otherwise, then
- Suppose
$Y \subset X$ , then$E$ is open relative to$Y$ when$\forall x \in E, \exists r \ni d(x, q) < r \land q \in Y \rightarrow q \in E$ (what if$q \not \in Y$ ?)- Take
$X = E \cup {y}$ (where$y$ is isolated), then$E$ is open rel.$Y$ but not$X$
- Take
- Finite sets can be open....
- Suppose
$Y \subset X$ ,$E \subset Y$ is open rel.$Y$ iff$E = Y \cap G$ for some open$G \subset X$ - Forward
- Notice, for all
$x \in E$ , there exists$r_x > 0, \forall p \in N_{r_x}(x) \land p \in Y \rightarrow p \in E$ . For each$x \in E$ , denote$V_x = N_{r_x}(x)$ , let$G = \bigcup_{x \in E}V_x$ (naturally,$G$ is open), furthermore,$E \subset G \cap Y$ . Fix$p \in G \cap Y$ , then$\exists x \in E, p \in N_{r_x}(x)$ , and$p \in Y$ , thus$p \in E$ , and$E = G \cap Y$
- Notice, for all
- Reverse
- Suppose
$E = Y \cap G$ , where$G \subset X$ is open in$X$ . Fix$x \in E \rightarrow x \in G \land x \in Y$ , naturally,$\exists r > 0, N_r(x) \subset G$ , thus,$p \in N_r(x) \in E \iff p \in Y$ . As such,$\forall x \in E$ , for$r_x, p \in N_{r_x}(x) \land p \in Y \rightarrow p \in E$ , and$E$ is open rel.$Y$ .
- Suppose
- Forward
- Let
$X$ be a metric space, an open cover of$E \subset X$ , is a collection of open sets${G_{\alpha}\subset X}$ , where$E \subset \bigcup_{\alpha} G_{\alpha}$ . -
compactness -
$E$ is compact, if every open cover${G_{\alpha}}$ has a finite sub-cover -
intuition
- As noticed above, openness / closedness of
$E$ depends on the space in which$E$ is enclosed, (i.e a subset of$E$ can be closed if$E$ is open and vice-versa). However, compactness is a property that is independent of the set in which$E$ is enclosed. I.e if$E$ is compact, all subsets of$E$ are compact
- As noticed above, openness / closedness of
- Suppose
$K \subset Y \subset X$ , then$K$ is compact rel.$X$ iff$K$ is compact rel.$Y$ - Forward
- Suppose
$K$ is compact rel.$X$ , then for each open-cover${G_{\alpha}}$ there is a finite sub-cover. Let${F_{\alpha}}$ be an open cover of$K$ in$Y$ , that is$K = \bigcup_{\alpha} F_{\alpha}$ , notice, for each$F_{\alpha} = Y \cap G_{\alpha}$ , where$G_{\alpha} \subset X$ is open in$X$ , then consider${G_{\alpha}}$ , a cover of$K$ in$X$ , thus a finite-subcover${G_{\alpha}'}$ exists, where$L \subset \bigcup_{\alpha} G_{\alpha}'$ , and$K \subset \bigcup_{\alpha} G_{\alpha}' \cap Y = \bigcup_{\alpha} F_{\alpha}'$ , a finite sub-cover in$Y$ !!
- Suppose
- Reverse
- Suppose
$K$ is compact in$Y$ , then consider,${G_{\alpha}}$ , an open-cover in$X$ , notice, consider$G_{\alpha} \cap Y = F_{\alpha}$ , an open-set in$Y$ , and$K \subset \bigcup_{\alpha} F_{\alpha}$ , and$K \subset \bigcup_{\alpha'} F_{\alpha'}$ (a finite-subcover of${F_{\alpha}}$ ), and${G_{\alpha'}}$ is an open-cover in$X$ !!!
- Suppose
- Forward
- Compact subsets of metric spaces are closed
- Suppose
$K$ is compact, prove that$K^c$ is open. Fix$p \in K^c$ , and denote$\forall q \in K, r_{q} < d(p, q) /2, W_{q} = N_{r_q}(q), V_q = N_{r_q}(p)$ . Notice,$K \subset \bigcup_{q \in K} W_q$ (open cover), thus identify finite$(q_i)$ , where${W_{q_i}}$ is finite open cover. and take$r = min_{q_i}(r_{q_i})$ , then$N_r(p) \cap K = \emptyset$ , thus,$N_r(p) \subset K^c$ , and$K^c$ is open, thus$K$ is closed
- Suppose
- Closed subsets of compact sets are compact
- Suppose
$L \subset K$ , and${G_{\alpha}}$ is an open cover of$L$ , then$\bigcup_{\alpha} G_{\alpha} \cup L^c \supset K$ , and$L^c$ is open$L$ is closed, thus${G_{\alpha}'} \cup L^c$ has a finite sub-cover (since$K$ is covered). Notice, even if$L^c$ is included in the finite-subcover${G_{\alpha}'}$ it can be covered, and$L \subset \bigcup_{\alpha'} G_{\alpha'}$
- Suppose
- If
$F \subset X$ is closed, and$K$ is compact then$F \cap K$ is closed- Notice,
$K$ is closed, and$F \cap K \subset K$ is closed, and by the above thm.$F \cap K$ is compact.
- Notice,
- If
${K_{\alpha}}$ is a collection of compact subsets of metric space$X$ , such that the intersection of any finite collection of sets i non-empty, then$\cap_{\alpha} K_{\alpha}$ is non-empty- Suppose otherwise, take
$K \in {K_{\alpha}}$ , and suppose$K \cap \bigcap_{\alpha} K_{\alpha} = \emptyset$ , then$K \subset \bigcup_{\alpha}K_{\alpha}^c$ , notice,${K_{\alpha}^c}$ is an open-cover of$K$ , and thus there are a finite number of$K_{\alpha'}$ , where$K \cap \bigcap_{\alpha'} K_{\alpha'} = \emptyset$ , a contradiction.
- Suppose otherwise, take
- If
$E$ is an infinite subset of compact$K$ , then$E$ has a limit point in$K$ - Suppose otherwise, then no
$p \in K$ is a limit point of$E$ , that is,$\forall p \in K, \exists r_p > 0, N_{r_p}(p) \backslash {p} \cap E = \emptyset$ . Notice,$E \subset K \subset \bigcup_{p \in K} N_{r_p}(p)$ , thus there are finite${p_i}$ , where$E \subset K \subset \bigcup_{p_i} N_{r_{p_i}}(p_i)$ , naturally,$\exists p_i, N_{r_{p_i}}(p_i) \backslash {p_i} \cap E \not=\emptyset$ (otherwise,$E$ is at most finite), a contradiction.
- Suppose otherwise, then no
- If
${I_n}$ is a sequence of intervals in$R^1$ , where$I_n \supset I_{n + 1}$ , then$\cap_i I_i \not= \emptyset$ - If
$I_n = [a_n, b_n]$ , then consider the set$B = {b_i}$ , notice,$B$ is non-empty, and bound below, by$a_1$ , as$a_i \leq a_{i + 1}$ , and$a_i \leq b_i$ , thus$\beta = inf(B)$ exists in$R$ . Notice,$\forall i, b_i \geq \beta$ , similatly,$\forall m, a_i \leq a_{i + m} \leq b_{i + 1} \leq b_m$ , thus$a_i \leq \beta$ . As such,$\forall n, \beta \in I_n$
- If
- Let
$k > 0$ , and suppose each$I_n$ is a k-cell, where$I_n \supset I_{n + 1}$ , then$\bigcap_i I_i \not = \emptyset$ - Apply same theorem above, noticing that each
$I_n = I_1 \times \cdots \times I_k$ (intervals), and apply above thm. component-wise
- Apply same theorem above, noticing that each
- Every
$k-cell$ is compact- Suppose
$I = I_1 \times \cdots \times I_k \subset \mathbb{R}^k$ , where$I_n = [a_n, b_n]$ . Suppose that${G_{\alpha}}$ is an open-cover of$I$ for which no finite sub-cover exists. That is, for each finite sub-cover of${G_{\alpha}}$ , there exists a sub-k-cell of$I$ , defined as follows, for each$I_n = [a_n, b_n]$ take the mid-point of each to obtain,$I_n = [a_n, c_n] \cup [c_n, b_n]$ ($c_n = \frac{a_n + b_n}{2}$ ), notice, this division returns$2^k$ k-cells whose union is$I$ , take$I_1$ as one of the k-cells not covered by any finite sub-cover of${G_{\alpha}}$ (otherwise$I$ is compact). Also notice that for each, $x, y \in I, |x - y| \leq \begin{bmatrix}\Sigma_i (b_n - a_n)^2 \end{bmatrix}^{1/2}$. - Notice,
$I_1$ is also covered by${G_{\alpha}}$ but not by any finite-sub cover, thus we can infinitely recurse yielding${I_i}$ k-cells, where$I_n \supset I_{n + 1}$ -
$I_n$ is covered by${G_{\alpha}}$ but not by any finite sub-cover -
$x, y \in I_n$ ,$|x - y| < 2^{-n} \delta$ (prove by induction or manually),
- Furthermote, no
$I_n$ is empty, thus take$x \in I_n$ , notice, for some$G_{\alpha}$ ,$x \in G_{\alpha} \rightarrow \exists r > 0, N_r(x) \subset G_{\alpha}$ , take$n$ where$2^{-n} \delta < r$ , and$I_n \subset G_{\alpha}$ (a contradiction, this is a finite sub-cover).
- Suppose
-
heine-borel
- The following statements are equivalent for some subset
$E \subset R^k$ -
$E$ is closed and bounded -
$E$ is compact - Every infinite subset of
$E$ has a limit point in$E$
-
- 1 -> 2
- If
$E$ is closed and bounded, then$E \subset I$ where$I$ is a k-cell, and is thus compact. Notice$E$ is closed and is a subset of a compact set, and is thus closed.
- If
- 2 -> 3
- Follows since
$E$ is compact
- Follows since
- 3 -> 1
- Closed?
- Suppose otherwise, then take
$p$ which is limit point of$E$ , and construct the set$E' = {x \in E: |x - p| < 1/n}$ , this set is infinite as$p$ is limit point of$E$ , whose only limit point is$p$ , thus$p \in E$ (contradiction).
- Suppose otherwise, then take
- Bounded?
- Take
$x_n \in E, |x_n| > n$ (that this set is infinite follows from it not being bounded), notice, the set of$x_i$ does not have a limit point in$E$ , contradiction.
- Take
- Closed?
- The following statements are equivalent for some subset
-
weierstass
- Every bounded infinite subset of
$R^k$ has a limit point in$R^k$ - Notice, suppose
$E \subset R^k$ , is bounded, then$E$ is contained in a k-cell which is compact, thus$E$ being infinite subset of a compat set has a limit point in$R^k$ (corollary of above)
- Notice, suppose
- Every bounded infinite subset of
-
Let
$P$ be a non-empty perfect set in$R^k$ , then$P$ is uncountable- Notice,
$P$ is closed and has limit points, thus$P$ is infinite. Label each$x_i \in P$ , then for each$x_i$ , define$V_i$ , where$V_i = N_{r_i}(x_i)$ ,$V_{i + 1} \subset V_i$ , and$V_{i} \cap P \not= \emptyset$ , and$x_i \not \in \overline{V_{i + 1}}$ - Notice, the 2nd to last prop. holds as each
$x_i \in P$ is a limit point of$x_i$ - The last thm. hold again, as all
$r > 0$ ,$N_r(x_i) \cap P \not = \emptyset$ , so one can take$r_{i + 1} < d(x_i, x_{i + 1})$
- Notice, the 2nd to last prop. holds as each
- As such,
$\overline{V_i} \supset \overline{V_{i + 1}}$ , thus$K_n = \overline{V_n} \cap P$ is compact, and$K_n \supset K_{n + 1}$ , and$x_n \not \in K_{n + 1}$ , thus$\cap_i K_n = \emptyset$ , a contradicton
- Notice,
-
connected sets
-
separated sets - elet
$A, B \subset X$ , where$X$ is a metric space. Then$A, B$ are separated if$\overline{A} \cap B = \overline{B} \cap A = \emptyset$ , then$A, B$ are separated -
Connected sets-
$A$ is connected, if it is not the union of 2 separated sets
-
separated sets - elet
-
$E \subset \mathbb{R}$ is connected iff$x, y \in E, x < z < y \rightarrow z \in E$ - Forward
- Suppose
$E$ is connected, and that$x, y \in E, z \in \mathbb{R}$ , where$x < z < y$ . Then take$E_1 = {x \in E, x < z}, E_2 = {x \in E, x > z}$ - Notice
$E = E_1 \cup E_2$ , and$\overline{E_1} \cap E_2 = \overline{E_2} \cap E_1 = \emptyset$ - Suppose
$x \in \overline{E_1} \cap E_2$ , then$x > z$ , and$N_{x - z}(x) \cap E_1 = \emptyset$ (similarly in other dir.)
- Suppose
- Suppose
- Reverse
- Prove contrapositive (
$E$ separated, then implicant does not hold)
- Prove contrapositive (
- Forward
-
problems
-
$\emptyset \subset A$ (where$A$ is any set)- Notice, contrapositive always true, i.e
$x \not \in A \rightarrow x \not \in \emptyset$
- Notice, contrapositive always true, i.e
-