-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmandtx.tex
2394 lines (2255 loc) · 65.3 KB
/
mandtx.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\section{NJOY Maintenance and Testing}
\label{sMandT}
There are several components of the NJOY Quality Assurance
\index{Quality Assurance!QA}system: a detailed code manual
(this report), version control software (\texttt{git})
\index{git@{\ty git}} that
keeps track of all changes made to the code, a suite of standard
test problems to verify installation, and extensive application
of the code to find special cases that lead to failures.
\subsection{Code Maintenance with GIT}
\label{ssMandT_GIT}
Begininng with NJOY2016, \texttt{git} is used for software version
control. This is a significant departure from UPD\index{UPD}\cite{UPD},
the local version control program used for past NJOY
versions. \texttt{git} version control software is used virtually
everywhere modern software development is utilized and is available
on platforms using Windows, Linux, and Mac operating
systems. \texttt{git} will keep track of the changes made to
all files it is tracking.
This manual is not a proper forum to provide a tutorial on using
\texttt{git}. A brief tutorial is available at
\url{https://try.github.io}. This introduction provides the reader
with enough understanding to be able to perform basic \texttt{git}
operations. For additional information, we recommend users check the
official \texttt{git} website, \url{https://git-scm.com}, or other
online resources (e.g., \emph{Pro Git}\cite{GIT}).
\subsection{Standard Test Problems}
\label{ssMandT_testprob}
Another important part of the NJOY revision control procedure is
the set of standard test problems used to validate each new
\index{testing!test problems}
version. This kind of systematic testing is also a key part of
any QA program. \index{Quality Assurance!QA} The
NJOY test problems also act as examples in helping new users
to operate the code system. Brief descriptions of the current sec
of test problems follow. See the following sections for details.
\begin{description}
\begin{singlespace}
\item[Problem 1:] Process one ENDF/B-V isotope through pointwise
and multigroup modules. It tests heating and damage
calculations, thermal calculations for free-gas carbon and
carbon bound in graphite, and multigroup averaging. The
full PENDF tape is included in the test comparisons. ENDF/B-V
Tape 511 and ENDF/B-III thermal tape T322 are provided in the
NJOY2016 package.
\item[Problem 2:] Process one ENDF/B-IV isotope for a practical
CCCC library. It tests resonance reconstruction,
Doppler-broadening to several temperatures, self-shielded unresolved
cross sections, self-shielded multigroup cross sections, and the
CCCC files ISOTXS, BRKOXS, and DLAYXS. Tape 404 is provided in the
NJOY2016 package.
\item[Problem 3:] Process photon interaction cross sections
into DTF and MATXS formats. The problem tests photoatomic cross
section linearization in \hyperlink{sRECONRhy}{RECONR},
multigroup averaging in \hyperlink{sGAMINRhy}{GAMINR}, and
output formatting in \hyperlink{sDTFRhy}{DTFR} and
\hyperlink{sMATXSRhy}{MATXSR}. The
DLC7E library is provided in the NJOY2016 package.
\item[Problem 4:] \hyperlink{sERRORRhy}{ERRORR} is tested,
including the calculation of
covariances for fission $\bar{\nu}$. Tape 511 is used.
\item[Problem 5:] This run tests \hyperlink{sCOVRhy}{COVR},
including the plotting
capability. Tape 511 is used. This calculation produces a
large number of covariance graphs.
\item[Problem 6:] Includes a number of 2-D sample problems for
\hyperlink{sPLOTRhy}{PLOTR}, and one 3-D case. Plots with
special characters,
error bars, curve tags, and legend blocks are demonstrated.
\item[Problem 7:] Prepares an ACE-format library for a fissionable
material.
\item[Problem 8:] Checks the processing of a typical ENDF/B-VI
material using Reich-Moore resonances and File 6 for energy-angle
distributions through PENDF production and
\hyperlink{sACERhy}{ACER} formatting.
\item[Problem 9:] Demonstrates the use of
\hyperlink{sLEAPRhy}{LEAPR} to generate
a scattering kernel for water. The $\alpha$ and $\beta$ ranges
have been reduced to make the case run faster with less output.
\item[Problem 10:] The production of unresolved resonance probability
tables for MCNP is demonstrated. \hyperlink{sUNRESRhy}{UNRESR}
and \hyperlink{sPURRhy}{PURR} are both run to
allow comparisons of the Bondarenko results, and then
\hyperlink{sACERhy}{ACER} is
run to format the results for MCNP.
\item[Problem 11:] Demonstrates the production of a library for the
WIMS reactor lattice code using $^{238}$Pu from ENDF/B-V. PENDF
processing, \hyperlink{sGROUPRhy}{GROUPR}, and
\hyperlink{sWIMSRhy}{WIMSR} are all included.
\item[Problem 12:] Shows how to use \hyperlink{sGASPRhy}{GASPR}
to generate gas-production
data on the PENDF file, including color Postscript plots of the
resulting cross sections.
\item[Problem 13:] Demonstrates the ``new'' MCNP formats and ACE
plotting.
\item[Problem 14:] Shows how to prepare ACE incident proton
data and demonstrates the charged-particle format. The necessary
evaluation is provided.
\item[Problem 15:] Executes \hyperlink{sMODERhy}{MODER}/
\hyperlink{sRECONRhy}{RECONR}/\hyperlink{sBROADRhy}{BROADR}/
\hyperlink{sGROUPRhy}{GROUPR}/\hyperlink{sERRORRhy}{ERRORR}
(once each for MF31, MF33 and MF34). This job illustrates
NJOY's ability
to process uncertainty data for $\bar{\nu}$ (MF31), pointwise cross
sections (MF33) and angular distributions (MF4/MT2 P$_1$ moment).
The ``ENDF' input tape is the JENDL-3.3 $^{238}$U evaluation,
demonstrating that non-ENDF libraries that conform to the ENDF-6
format can be successfully processed by NJOY. This input tape is
provided in the NJOY2016 package.
\item[Problem 16:] This test job is similar to Problem 15, but it
omits the \hyperlink{sGROUPRhy}{GROUPR} module,
demonstrating that uncertainty data
(MF33 \& MF34) processing can proceed directly from PENDF input.
We also append multiple \hyperlink{sCOVRhy}{COVR} and
\hyperlink{sVIEWRhy}{VIEWR} inputs to this job to
illustrate postscript plot generation for a user-specified set
of cross sections (MF33) and automatic plot generation for MF34.
\item[Problem 17:] This is the longest running job in the NJOY test
suite, involving processing of $^{235,238}$U and $^{239}$Pu. The
job suite includes \hyperlink{sRECONRhy}{RECONR},
\hyperlink{sBROADRhy}{BROADR}, and \hyperlink{sGROUPRhy}{GROUPR}
for each nuclide, a \hyperlink{sMODERhy}{MODER} job to combine
the GENDF files and ERRORR processing that includes correlations
among the isotopes. The necessary JENDL-3.3
input files are provided in the NJOY2016 package.
\item[Problem 18:] Execute \hyperlink{sMODERhy}{MODER}/
\hyperlink{sRECONRhy}{RECONR}/\hyperlink{sBROADRhy}{BROADR}/
\hyperlink{sGROUPRhy}{GROUPR}/\hyperlink{sERRORRhy}{ERRORR}/
\hyperlink{sCOVRhy}{COVR} and \hyperlink{sVIEWRhy}{VIEWR}
to process MF35 (spectrum) uncertainty data. The multigroup
energy boundaries used in \hyperlink{sGROUPRhy}{GROUPR}
and \hyperlink{sERRORRhy}{ERRORR} match those
used to define the uncertainty data on the input tape and allow
for easy comparison of the processed output and the original data.
The ``ENDF'' input file is a composite of ENDF/B-VII.0 $^{252}$Cf
decay data (for MF5 \& MF35, MT18) and ENDF/B-VII.0 $^{252}$Cf
neutron transport data (for all other MF/MT data) and given a
dummy MATN of 9999.
\item[Problem 19:] Tests processing of a Reich-Moore evaluation
($^{241}$Pu) in an ACE file for MCNP. An RM evaluation from ORNL
is provided.
\item[Problem 20:] Tests processing of covariance data from
Reich-Moore-Limited resonance parameters using an
experimental $^{35}$Cl evaluation from ORNL that is included in
the NJOY2016 package.
\end{singlespace}
\end{description}
\subsection{Test Problem 1}
\label{ssMandT_1}
\index{testing!Problem 01}
This problem demonstrates how to prepare data for natural carbon
as given on the ENDF/B-V ``Standards Tape'' and one of the ENDF/B-III
thermal tapes. We've kept on using these old input libraries
for this test over all the versions of NJOY for consistency.
\index{testing!Problem 01}
\index{ENDF!ENDF/B-V}
\index{ENDF!ENDF standards tape}
The input cards for NJOY are listed below in the form of
a UNIX shell script. We normally run this script in a subdirectory
called \cword{test}, and the first few cards copy the
ENDF general-purpose and thermal data from their normal locations
in the next higher directory into the test subdirectory. Note
that the data files are assigned the local names \cword{tape20}
and \cword{tape26}. The \cword{cat} line starts a ``here'' file,
which continues down to the \cword{eof} line near the end of
the input. The NJOY code is then run using this new input file,
and the output file and PENDF file are saved in the names
\index{PENDF} \cword{out01}, and \cword{pend01} for later comparisons
with previous runs.
\small
\begin{ccode}
echo 'NJOY Test Problem 1'
echo 'getting endf tape 511'
cp ../t511 tape20
echo 'getting thermal tape 322'
cp ../t322 tape26
echo 'running njoy'
ulimit -s 32768
cat>input <<EOF
moder
20 -21
reconr
-21 -22
'pendf tape for c-nat from endf/b tape 511'/
1306 3/
.005/
'6-c-nat from tape 511'/
'processed by the njoy nuclear data processing system'/
'see original endf/b-v tape for details of evaluation'/
0/
broadr
-21 -22 -23
1306 1/
.005/
300.
0/
heatr
-21 -23 -22/
1306 1/
444
thermr
0 -22 -24
0 1306 8 1 1 0 0 1 221 2
300.
.05 1.2/
thermr
26 -24 -23
1065 1306 8 1 2 1 0 1 229 2
300.
.05 1.2/
groupr
-21 -23 0 -24
1306 3 3 3 3 1 1 1
'carbon in graphite'/
300
1.e10
3 1 'total'/
3 2 'elastic'/
3 4 'inelastic'/
3 51 'discrete inelastic'/
3 -68 'continued'/
3 91 'continuum inelastic'/
3 102 'n,g'/
3 103 '(n,p)'/
3 104 '(n,d)'/
3 107 '(n,a)'/
3 221 'free thermal scattering'/
3 229 'graphite inelastic thermal scattering'/
3 230 'graphite elastic thermal scattering'/
3 251 'mubar'/
3 252 'xi'/
3 253 'gamma'/
3 301 'total heat production'/
3 444 'total damage energy production'/
6 2 'elastic'/
6 51 'discrete inelastic'/
6 -68 'continued'/
6 91 'continuum inelastic'/
6 221 'free thermal scattering'/
6 229 'graphite inelastic thermal scattering'/
6 230 'graphite elastic thermal scattering'/
17 51 'inelastic gamma production'/
16 102 'capture gamma production'/
0/
0/
moder
-23 25
stop
EOF
../xnjoy<input
echo 'saving output and pendf files'
cp output out01
cp tape25 pend01
\end{ccode}
\normalsize
The first step is to run the \hyperlink{sMODERhy}{MODER}
module to convert the ASCII ENDF file to binary mode. Using
binary mode will often cut the cost of running NJOY
jobs. \hyperlink{sRECONRhy}{RECONR} is then used to linearize and
unionize the cross sections (no resonance reconstruction is
needed for carbon). A tolerance of 0.5\% was requested for this
linearization. The \hyperlink{sBROADRhy}{BROADR} module
is used to Doppler-broaden the carbon cross sections to
300K. It is recommended that the same thinning and
reconstruction tolerances be used in
\hyperlink{sBROADRhy}{BROADR} as are used in
\hyperlink{sRECONRhy}{RECONR}.
\index{MODER}
\index{RECONR}
\index{BROADR}
This NJOY run supplements the original ENDF data with computed
values for heating, radiation damage, and thermal scattering.
The call to the \hyperlink{sHEATRhy}{HEATR} module
requests MT444 to get the damage cross section; heating
(MT301) is automatically provided. The first of the two
\hyperlink{sTHERMRhy}{THERMR} runs generates thermal scattering data
for a carbon free gas at 300K (MT221). The second
\hyperlink{sTHERMRhy}{THERMR} run generates
data for graphite (MT229). The ``1'' in the sixth field
on the input card directs the module to use the $S(\alpha,\beta)$
data from MT1065 on \cword{tape26} in order to compute the inelastic
scattering cross section and scattering matrix, the next field of
``0'' requests $E,E',\mu$ ordering, and the following ``1'' directs
it to compute the coherent elastic scattering cross section using
the built-in parameters for graphite.
\index{HEATR}
\index{THERMR}
\index{graphite}
When the second \hyperlink{sTHERMRhy}{THERMR} run has
finished, \cword{tape23} contains the complete PENDF tape needed by
\hyperlink{sGROUPRhy}{GROUPR}.\index{GROUPR} Multigroup
neutron reaction and photon production cross sections are computed
using the Los Alamos 30-group structure for neutrons, the Los Alamos
12-group structure for photons, and the CLAW weight function.
\index{30-group structure}
\index{12-group structure}
\index{CLAW weight function}
The scattering order is P$_3$. Note that the long-input form
is used to specify the list of reactions to be processed. Most
users now prefer the automatic input option. The user has to
carefully look at the reactions available on the ENDF tape and
to consider the additional reactions added by
\hyperlink{sHEATRhy}{HEATR} and
\hyperlink{sTHERMRhy}{THERMR}. Note especially the
inclusion of several gas production reactions
from the ENDF tape, the thermal reactions MT221 and MT229 from
the PENDF tape, and MT301 and MT444 as generated by
\hyperlink{sHEATRhy}{HEATR} from the PENDF tape. The
output is easy to read, but remember that
groups are given in the order of increasing energy.
The thermal scattering reactions must also be requested in the
scattering matrix section (MFD=6). MT230 was automatically
generated by \hyperlink{sTHERMRhy}{THERMR} as MT229+1
when coherent elastic scattering
for graphite was requested.
Photon production matrices are requested in the lines with
\cword{mfd=17} and \cword{mfd=16}. Actually, the use of ``17''
to denote data given in MF13 on the ENDF tape is no longer
required by \hyperlink{sGROUPRhy}{GROUPR}.
As a last step, this problem runs \hyperlink{sMODERhy}{MODER}
once more to convert the binary PENDF tape to ASCII mode.
\subsection{Test Problem 2}
\label{ssMandT_2}
\index{testing!Problem 02}
The second problem supplements the first by adding resonance
reconstruction and output formatting. The ENDF/B-IV material
$^{238}$Pu (MAT1050) was originally chosen for this problem because
it was freely available and its execution time was fairly small.
\index{ENDF!ENDF/B-IV}
\small
\begin{ccode}
echo 'NJOY Test Problem 2'
echo 'getting endf tape 404'
cp ../t404 tape20
echo 'running njoy'
cat>input <<EOF
moder
20 -21
reconr
-21 -22
'pendf tape for pu-238 from endf/b-iv tape 404'/
1050 3/
.005/
'94-pu-238 from endf/b tape t404'/
'processed by the njoy nuclear data processing system'/
'see original endf/b-iv tape for details of evaluation'/
0/
broadr
-21 -22 -23
1050 3 0 1 0/
.005/
300. 900. 2100.
0/
moder
-23 33
unresr
-21 -23 -24
1050 3 7 1
300 900 2100
1.e10 1.e5 1.e4 1000. 100. 10. 1
0/
groupr
-21 -24 0 -25
1050 5 0 4 3 3 7 1
'94-pu-238'/
300. 900. 2100.
1.e10 1.e5 1.e4 1000. 100. 10. 1
.1 0.025 0.8208e06 1.4e06
3 1 'total'/
3 2 'elastic'/
3 16 'n2n'/
3 17 'n3n'/
3 18 'fission'/
3 102 'capture'/
3 251 'mubar'/
3 252 'xi'/
3 253 'gamma'/
3 259 '1/v'/
6 2 'elastic'/
6 16 'n2n'/
6 17 'n,3n'/
6 18 'fission'/
6 51 'discrete inelastic'/
6 -59 'continued'/
6 91 'continuum inelastic'/
0/
3 1 'total'/
3 2 'elastic'/
3 18 'fission'/
3 102 'capture'/
6 2 'elastic'/
0/
3 1 'total'/
3 2 'elastic'/
3 18 'fission'/
3 102 'capture'/
6 2 'elastic'/
0/
0/
ccccr
-25 26 27 0
1 1 't2lanl njoy'/
'ccccr tests for njoy'/
50 0 1 4 1
pu238 pu238 endfb4 ' 1050 ' 1050 10.89
1 0 50 -1
0 2.3821e02 3.3003e-11 1.7461e-12 0. 1.e10 0.0
3 6
300 900 2100
1.e5 1.e4 1000. 100. 10. 1
moder
-24 28
stop
EOF
../xnjoy<input
echo 'saving output and pendf files'
cp output out02
cp tape28 pend02
\end{ccode}
\normalsize
The \hyperlink{sRECONRhy}{RECONR} input is similar to the one
in Problem 1, but reading the listing file will demonstrate that
\hyperlink{sRECONRhy}{RECONR} added about 2700
points to the original grid in the resonance region. After a
little thinning, it ended up with about 2800 resonance energy
points at 0K for 0.5\% reconstruction. The data from
\hyperlink{sRECONRhy}{RECONR} was then passed to
\hyperlink{sBROADRhy}{BROADR} for preparation of cross sections
at 300, 900, and 2100K. An examination of the output listing
shows that some thinning was possible because of the smoothing
effect of Doppler broadening; the zero degree grid of 3241 points
changed to 2341 points at 2100 degrees.
\index{RECONR}
\index{BROADR}
One of the new features of this run is the call to
\hyperlink{sUNRESRhy}{UNRESR}.\index{UNRESR} The
user will normally notice that unresolved-resonance parameters
are available for a material by reading the introductory
information on the ENDF tape, but
\hyperlink{sUNRESRhy}{UNRESR} will return gracefully
if no unresolved data are present in the evaluation. The long output
from \hyperlink{sUNRESRhy}{UNRESR} gives a table
of the self-shielded\index{self-shielding}
cross sections by reaction (vertical) and sigma-zero\index{$\sigma_0$}
value (horizontal) for each point of the unresolved-range energy grid.
The reactions are flux-weighted total, elastic, fission, capture, and
current-weighted total reading from the top down. Heating, damage,
and thermal cross sections were omitted for this particular problem.
Therefore, the final PENDF tape is on \cword{tape22}, the output
from \hyperlink{sUNRESRhy}{UNRESR}.
The \hyperlink{sGROUPRhy}{GROUPR}\index{GROUPR} run
shown here adds several new features over
the one given for Problem 1. First, multiple temperatures and sigma-zero
values are specified in order to get tables of self-shielded
cross sections for the total, elastic, fission, and capture reactions.
It is desirable to use the same sigma-zero grid in
\hyperlink{sGROUPRhy}{GROUPR} that was used
in \hyperlink{sUNRESRhy}{UNRESR}, although
\hyperlink{sGROUPRhy}{GROUPR} will attempt to interpolate if the
grids are different. Note that a section of
\hyperlink{sGROUPRhy}{GROUPR} input is given for 300K with
complete coverage of all the reactions, and additional sections are
given for the two higher temperatures with only the self-shielded
reactions included.\index{self-shielding} An examination of the output
listing will show that self-shielded cross sections are given for the
low-energy reactions (total, elastic, fission, capture), with group
index reading down and sigma-zero value reading across.
Another new feature of this input is the computation of the
fission matrix (\cword{mfd=6}, \cword{mtd=18}). More complicated
input may be necessary for other materials. Examination of the
output listing will show that \hyperlink{sGROUPRhy}{GROUPR}
discovered that the fission spectrum shape was constant over
the entire energy range; therefore, it only put out a spectrum
and a fission-neutron production cross section.
\index{fission matrix}
When the \hyperlink{sGROUPRhy}{GROUPR} run is complete,
the final GENDF tape will be found on \cword{tape25}. This file is
used as input to the \hyperlink{sCCCCRhy}{CCCCR}
module to produce ISOTXS and BRKOXS files for $^{238}$Pu.
\index{GENDF}
\index{CCCCR}
\index{ISOTXS}
\index{BRKOXS}
\subsection{Test Problem 3}
\label{ssMandT_3}
\index{testing!Problem 03}
This problem demonstrates the use of
\hyperlink{sGAMINRhy}{GAMINR}\index{GAMINR} to prepare
photon interaction (or photoatomic) cross sections.
\index{!photoatomic!photoatomic cross sections}
\index{photon interaction cross sections}
It also demonstrates \hyperlink{sDTFRhy}{DTFR}\index{DTFR}, including plotting,
\index{plotting} and \hyperlink{sMATXSRhy}{MATXSR}\index{MATXSR}. For
the sake of continuity, this test problem uses a rather old version
of the photon interaction files called DLC7E\index{DLC7E}. The MF23
and MF27 parts of these data are written on two separate files. Later
libraries have everything on a single file.
\small
\begin{ccode}
echo 'NJOY Test Problem 3'
echo 'getting photoatomic tape gam23'
cp ../gam23 tape30
echo 'getting photoatomic tape gam27'
cp ../gam27 tape32
echo 'running njoy'
cat>input <<EOF
reconr
30 31
'pendf tape for photon interaction cross sections from dlc7e'/
1 1 0
.001/
'1-hydrogen'/
92 1 0
.001/
'92-uranium'/
0/
gaminr
32 31 0 33
1 3 3 4 1
'12 group photon interaction library'/
-1 0/
92
-1 0/
0/
dtfr
33 34 31 36
1 1 0
5 12 4 5 16 1 0
'pheat'
1 621 1
0/
'h' 1 1 0./
'u' 92 1 0./
/
matxsr
0 33 35/
1 't2lanl njoy'/
1 1 1 2
'12-group photon interaction library'/
'g'
12
'gscat'/
1
1
'h' 1 1
'u' 92 92
viewr
36 37/
stop
EOF
../xnjoy<input
echo 'saving output and plot files'
cp output out03
cp tape37 plot03
\end{ccode}
\normalsize
This run starts with an application of the
\hyperlink{sRECONRhy}{RECONR}\index{RECONR}
module to linearize and unionize the File 23 cross sections. Of course,
there is no resonance reconstruction required here. This
\hyperlink{sRECONRhy}{RECONR} run demonstrates the use
of a material loop; both hydrogen and uranium are processed
in one run. \hyperlink{sGAMINRhy}{GAMINR}\index{GAMINR} is then used
to prepare the multigroup photon interaction cross sections, including
heating; this run also uses a multimaterial loop. The
LANL\index{Los Alamos National Laboratory!LANL} 12-group photon
structure\index{12-group structure} is used. The GENDF tape
(\cword{tape33}) is processed into two completely different library
formats. First, \hyperlink{sDTFRhy}{DTFR}\index{DTFR} is
called. This is a rather old output module, but it is still useful
for some purposes. For one thing,
it automatically produces plots\index{plotting} of the multigroup data
overlayed with the PENDF data. Examples of the plots are given in the
\hyperlink{sDTFRhy}{DTFR} chapter of this manual. The MATXS
output is more useful, because it can be used in a much more
flexible way by the TRANSX code.
\subsection{Test Problem 4}
\label{ssMandT_4}
\index{testing!Problem 04}
This problem illustrates several aspects of the calculation of
covariances (uncertainties) of multigroup data using
\hyperlink{sERRORRhy}{ERRORR}.\index{ERRORR} The first
\hyperlink{sERRORRhy}{ERRORR} problem produces, on unit 23,
a file of multigroup cross section covariances\index{covariances}
(\cword{mfcov=33}) for all reactions present (\cword{iread=0})
in File 33 for $^{235}$U. The group structure employed is identical
to the energy grid selected by the evaluator (\cword{ign=19});
however, no covariances are produced for cross sections below 1 eV
or above 1 keV. The second \hyperlink{sERRORRhy}{ERRORR}
run adds to the above results a second data set containing
multigroup $\overline{\nu}$ covariances. Note that the
use of \cword{mfcov=31} dictates that a GENDF file be
produced (\cword{ngout=24}) prior to the start of
\hyperlink{sERRORRhy}{ERRORR}. In the
$\overline{\nu}$ run, a user-defined group structure is employed
(\cword{ign=1}).
\small
\begin{ccode}
echo 'NJOY Test Problem 4'
echo 'getting endf tape 511'
cp ../t511 tape20
echo 'running njoy...'
cat>input <<EOF
moder
20 -21
reconr
-21 -22
'u-235 10% pendf for errorr test problem from t511'/
1395/
.10/
0/
errorr
-21 -22 0 23 0/
1395 19 3 1 1/
0 0./
0 33/
1
1.e0 1.e3
groupr
-21 -22 0 24
1395 3 0 3 0 1 1 1
'u-235 multigroup nubar calculation'/
0.
1.e10
3 452 'total nubar'/
0/
0/
errorr
-21 0 24 25 23/
1395 1 2 1 1/
1 0
0 31/
7
1.e0 1.e1 1.e2 1.e3 1.e4 1.e5 1.e6 1.e7
stop
EOF
../xnjoy<input
echo 'saving output'
cp output out04
\end{ccode}
\normalsize
\subsection{Test Problem 5}
\label{ssMandT_5}
\index{testing!Problem 05}
This short problem produces multigroup covariances for carbon,
again using \cword{ign=19}, but here all cross sections from
\cword{1E-5} to \cword{2E7} are treated. The
\hyperlink{sCOVRhy}{COVR}\index{COVR} module
reads the binary output file from
\hyperlink{sERRORRhy}{ERRORR}\index{ERRORR} and produces
publication-quality plots\index{plotting} of all reactions for which
covariance data exist. This simple problem setup could be used with
only a few simple changes for any nuclide, in order to take a quick
look at the contents of the covariance files. For applications
where the resonance region is of interest, it is necessary to replace
the second \hyperlink{sMODERhy}{MODER}\index{MODER} step with a
resonance reconstruction step using
\hyperlink{sRECONRhy}{RECONR}, as in the previous example.
\small
\begin{ccode}
echo 'NJOY Test Problem 5'
echo 'getting endf tape 511'
cp ../t511 tape30
echo 'running njoy...'
cat>input <<EOF
moder
30 -31
moder
-31 -32
errorr
-31 -32 0 33/
1306 19 2 1/
0 0
0 33/
1
1e-5 2e7/
covr
33 0 34/
1/
/
/
1306/
viewr
34 35/
stop
EOF
../xnjoy<input
echo 'saving output and plot files'
cp output out05
cp tape35 plot05
\end{ccode}
\normalsize
\subsection{Test Problem 6}
\label{ssMandT_6}
\index{testing!Problem 06}
This test problem demonstrates and tests a number of different
kinds of plots\index{plotting} using data from ENDF/B-V Tape 511
(the ``Standards Tape''). The graphs produced and a detailed
discussion of the input cards will be found in the
\hyperlink{sPLOTRhy}{PLOTR}\index{PLOTR}
chapter of this manual.
\small
\begin{ccode}
echo 'NJOY Test Problem 6'
echo 'getting endf tape 511'
cp ../t511 tape30
echo 'running njoy'
cat>input <<EOF
plotr
31/
/
1/
'<endf/b-v carbon'/
'<t>otal <c>ross <s>ection'/
4/
1e3 2e7/
/
.5 10/
/
5 30 1306 3 1/
/
1/
'<endf/b-v carbon'/
'(n,]a>) with fake data'/
1 0 2 1 1.3e7 .32/
/
/
/
/
5 30 1306 3 107/
/
'<endf/b-v mat1306'/
2/
0/
-1 0/
'<s>mith & <s>mith 1914'/
0/
1.1e7 .08 .05 .05/
1.2e7 .10 .05 .05/
1.3e7 .09 .04 .04/
1.4e7 .08 .03 .03/
/
3/
0/
-1 2/
'<b>lack & <b>lue 2008'/
0/
1.15e7 .07 .02 0. .2e6 0./
1.25e7 .11 .02 0. .2e6 0./
1.35e7 .08 .015 0. .2e6 0./
1.45e7 .075 .01 0. .2e6 0./
/
1/
'<endf/b-v carbon'/
'<e>lastic <mf4>'/
-1 2/
/
/
/
/
/
/
5 30 1306 4 2/
/
1/
'<endf/b-v l>i-6'/
'(n,2n)]a >neutron distribution'/
-1 2/
/
/
0 12e6 2e6/
/
/
/
5 30 1303 5 24/
/
1/
'<endf/b-v l>i-6'/
'(n,2n)]a >neutron spectra vs <E>'/
4 0 2 2/
10. 2.e7/
/
1e-11 1e-6/
'<c>ross <s>ection (barns/e<v>)'/
5 30 1303 5 24 0. 12/
/
'10 <m>e<v'/
1e3 2e-11 1e2/
2/
5 30 1303 5 24 0. 16/
/
'14 <m>e<v'/
1e4 2e-10 2e3/
3/
5 30 1303 5 24 0. 20/
/
'20 <m>e<v'/
1e5 2e-9 4e4/
99/
viewr
31 32/
stop
EOF
../xnjoy<input
echo 'saving plot file'
cp tape32 plot06
\end{ccode}
\normalsize
\subsection{Test Problem 7}
\label{ssMandT_7}
\index{testing!Problem 07}
This test problem demonstrates the preparation of
ACE format\index{ACE format} libraries for the MCNP\index{MCNP}
continuous-energy Monte Carlo\index{Monte Carlo} code. The
material selected for processing was $^{235}$U from ENDF/B-V.
The \hyperlink{sGROUPRhy}{GROUPR} run is included to make a 30x20
photon production matrix for \hyperlink{sACERhy}{ACER}. This is
an obsolete method for handling
photon production for MCNP -- nowadays, people use the
``Detailed Photon Production'' option. This old test problem
is kept for consistency with the testing in previous versions
of NJOY.
\small
\begin{ccode}
echo 'NJOY Test Problem 7'
echo 'getting endf tape 511'
cp ../t511 tape20
echo 'running njoy...'
cat>input <<EOF
moder
20 -21
reconr
-21 -22
'pendf tape for u-235 from endf/b-v tape 511' /
1395 3 /
.005 /
'92-u-235 from endf/b-v tape 511 ' /
'processed by the njoy nuclear data processing system' /
'see original endf/b-v tape for details of evaluation' /
0 /
broadr
-21 -22 -23
1395 1 0 1 0 /
.005 /
300.
0 /
heatr
-21 -23 -24/
1395/
moder
-24 28
groupr
-21 -24 0 -25
1395 3 2 9 0 1 1 1 /
'u-235 from tape 511' /
300.
1.0e10
16 /
0 /
0 /
acer
-21 -24 -25 26 27 /
1/
'njoy test problem 7'/
1395 300. /
0/
/
stop
EOF
../xnjoy<input
echo 'saving output, pendf, and ace files'
cp output out07
cp tape26 ace07
cp tape28 pend07
\end{ccode}
\normalsize
\subsection{Test Problem 8}
\label{ssMandT_8}
\index{testing!Problem 08}
This problem was added to the NJOY testing suite to verify the
processing of a typical ENDF/B-VI material with Reich-Moore
resonances and File 6 energy-angle distributions. The $^{61}$Ni
evaluation is from ORNL, and the file is included in the NJOY
package. The normal processing sequence is used. The
\hyperlink{sGROUPRhy}{GROUPR} run is included to provide
additional output for comparing to standard results or to older
testing results. An \hyperlink{sACERhy}{ACER} run is also included.
\small
\begin{ccode}
echo 'NJOY Test Problem 8'
echo 'getting endf tape for ni-61'
cp ../eni61 tape20
cat>input <<EOF
moder
20 -21
reconr
-21 -22
'pendf tape for endf/b-vi.1 28-ni-61a'/
2834 1 0 /
.01/
'28-ni-61a from endf/b-vi.1 t124 (hetrick,fu;ornl)'/
0/
broadr
-21 -22 -23
2834 1/
.01/
300/
0/
heatr
-21 -23 -24/
2834 6 0 1 0 2/
302 303 304 402 443 444
moder
-24 28
groupr
-21 -24 0 -22
2834 3 3 9 4 1 1 1
'ni61a endf/b-vi.1 30x12'/
300
1e10
3/
3 251 'mubar'/
3 252 'xi'/
3 253 'gamma'/
3 259 '1/v'/
6/
16/
0/
0/
acer
-21 -24 0 25 26
1 1 1/
'28-ni-61a from endf-vi.1'/
2834 300./
0/
/
stop
EOF