This repository has been archived by the owner on Apr 25, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_run.py
457 lines (406 loc) · 22.5 KB
/
main_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import numpy as np
import torch
import argparse
from common.utils import prepare_dir, get_logger, set_utils_logger, init_device, save_args, save_commit_id, TensorBoard
from common.excavator import DataSelector
from common.oracle import StatsKeeper
import time
import random
def add_common_args(parser, model_name):
parser.add_argument("--main-model", type=str, required=True,
choices=["simple-lstm", "awd-lstm",
"mos-lstm", "emotions-simple-lstm", "awd-lstm-repetitions"],
help="The main model to use.")
# Data, seed
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--seed-shuffle', type=int, default=141,
help='Seed for the batch shuffling.')
parser.add_argument('--data', type=str, default='data/penn/',
help='location of the data corpus')
parser.add_argument('--emsize', type=int, default=400,
help='size of word embeddings')
# Cuda
parser.add_argument('--cuda-device', type=str, default='cuda:0')
parser.add_argument('--no-cuda', action='store_true',
help='do NOT use CUDA')
# log directory, log interval
parser.add_argument('--log-interval', type=int, default=200, metavar='N',
help='report interval')
parser.add_argument('--log-dir', type=str, default=f'logs/{model_name}',
help="Directory containing the runs")
parser.add_argument('--model-dir', type=str, help='Directory of the run. '
'If not specified, one is created based on the time.')
parser.add_argument('--model-dir-prefix', type=str,
help='A prefix to be added if the model-dir is '
'automatically created. Has no effect if --model-dir '
'is specified.')
parser.add_argument('--continue-train', action='store_true',
help='continue train from a checkpoint')
# epochs, batch sizes, bptt
parser.add_argument('--epochs', type=int, default=8000,
help='upper epoch limit')
parser.add_argument('--batch-size', type=int, default=20, metavar='N',
help='batch size')
parser.add_argument('--eval-batch-size', type=int, default=10, metavar='N',
help='eval batch size')
parser.add_argument('--test-batch-size', type=int, default=1, metavar='N',
help='test batch size')
parser.add_argument('--bptt', type=int, default=70,
help='sequence length')
parser.add_argument('--nhid', type=int, default=1150,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=3,
help='number of layers')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--wdecay', type=float, default=1.2e-6,
help='weight decay applied to all weights')
parser.add_argument('--lr', type=float, default=30,
help='initial learning rate')
parser.add_argument('--when', nargs="+", type=int, default=[-1],
help='When(which epochs) to divide the learning '
'rate by 10 - accepts multiple')
parser.add_argument('--when-steps', nargs="+", type=int, default=[-1],
help='When(which total step) to divide the learning '
'rate by 10 - accepts multiple')
parser.add_argument('--max-steps', type=int, default=np.inf,
help='Maximum number of total steps.')
# Data selection
parser.add_argument('--init-seq', type=str, default="original",
help='Initialization of the ds.current_seq '
'(original, overlap_N, overlapC_N (contiguous), '
'overlapCN_N (contiguous normalized), '
'overlapCNF_N (contiguous normalized flexible), '
'overlapCNX_N (contiguous normalized fake), '
'overlapCX_N (contiguous fake)')
parser.add_argument('--train-seq', type=str, default="original",
help='Which ds.train_seq method to use '
'(original, repeat_N')
parser.add_argument('--stat-folder', type=str, default="stats/",
help='Folder to store the stats inside the log '
'folder if relative, else to the absolute path plus '
'the model id.')
parser.add_argument('--use-repetitions', type=int, default=1)
# Train seq shuffling
parser.add_argument('--shuffle-row-seq', action="store_true",
help="Shuffles the ds.train_seq row-wise before training")
parser.add_argument('--shuffle-col-seq', action="store_true",
help="Shuffles the ds.train_seq column-wise before training")
parser.add_argument('--shuffle-each-row-seq', action="store_true",
help="Shuffles the ds.train_seq for each row individually")
parser.add_argument('--shuffle-full-seq', action="store_true",
help="Shuffles the ds.train_seq row and column wise (complete)")
def common_init(that):
"""Common initialization of our models. Here is the check list:
- [√] Parse the input arguments
- [√] Create necessary folders to save data
- [√] Set a logger to be used and save the output
- [√] Set manual seeds to make results reproductible
- [√] Init the correct device to be used by pytorch: cpu or cuda:id
- [√] Save the input arguments used
- [√] Save the git infos: commit id, repo origin
- [√] Set a tensorboard object to record stats
- [√] Set a DataSelector object which handles data samples
- [√] Set a StatKeeper object which can save arbitrary stats
- [√] Perform specific initializations based on input params
"""
that.args = that.init_args()
if that.args.continue_train and that.args.model_dir is None:
raise Exception("'--model-dir' must be specified when using "
"'--continue-train'")
prepare_dir(that.args)
that.logger = get_logger(that.args)
set_utils_logger(that.logger)
np.random.seed(that.args.seed)
random.seed(that.args.seed)
torch.manual_seed(that.args.seed)
init_device(that.args)
save_args(that.args)
save_commit_id(that.args)
that.tb = TensorBoard(that.args.model_dir)
that.ds = DataSelector(that.args)
that.sk = StatsKeeper(that.args, that.args.stat_folder)
# Init seq
if that.args.init_seq == "original":
# Done by default in DataSelector initialization
pass
elif that.args.init_seq.startswith("overlap_"):
overlap = int(that.args.init_seq.split("_")[1])
if that.args.bptt % overlap != 0:
raise Exception(f"overlap must divide '--bptt' (found {overlap})")
that.ds.current_seq = that.ds.overlap_seq(
that.args.batch_size, overlap)
elif that.args.init_seq.startswith("overlapC_"):
overlap = int(that.args.init_seq.split("_")[1])
if that.args.bptt % overlap != 0:
raise Exception(f"overlapC must divide '--bptt' (found {overlap})")
that.ds.current_seq = that.ds.overlap_c_seq(
that.args.batch_size, overlap)
elif that.args.init_seq.startswith("overlapCN_"):
overlap = int(that.args.init_seq.split("_")[1])
if that.args.bptt % overlap != 0:
raise Exception(
f"overlapCN must divide '--bptt' (found {overlap})")
that.ds.current_seq = that.ds.overlap_cn_seq(
that.args.batch_size, overlap)
elif that.args.init_seq.startswith("overlapCNX_"):
overlap = int(that.args.init_seq.split("_")[1])
if that.args.bptt % overlap != 0:
raise Exception(
f"overlapCNX must divide '--bptt' (found {overlap})")
that.ds.current_seq = that.ds.overlap_cnx_seq(
that.args.batch_size, overlap)
elif that.args.init_seq.startswith("overlapCX_"):
overlap = int(that.args.init_seq.split("_")[1])
if that.args.bptt % overlap != 0:
raise Exception(
f"overlapCX must divide '--bptt' (found {overlap})")
that.ds.current_seq = that.ds.overlap_cx_seq(
that.args.batch_size, overlap)
elif that.args.init_seq.startswith("overlapCNF_"):
overlap = int(that.args.init_seq.split("_")[1])
if overlap > that.args.bptt:
raise Exception(
"overlapCNF must be lower than '--bptt' (found {overlap})")
that.ds.current_seq = that.ds.overlap_cnf_seq(
that.args.batch_size, overlap)
else:
raise Exception(f"init-seq unkown: {that.args.init_seq}")
# Type of train_seq
if that.args.train_seq == "original":
that.train_seq = that.ds.train_seq
elif that.args.train_seq.startswith("repeat_"):
n = int(that.args.train_seq.split("_")[1])
that.train_seq = lambda: that.ds.repeated_train_seq(n)
else:
raise Exception(f"train-seq unkown: {that.args.train_seq}")
# Shuffling of the train_seq
if that.args.shuffle_row_seq:
that.ds.shuffle_row_train_seq()
if that.args.shuffle_col_seq:
that.ds.shuffle_col_train_seq()
if that.args.shuffle_each_row_seq:
that.ds.shuffle_each_row_train_seq()
if that.args.shuffle_full_seq:
that.ds.shuffle_full_train_seq()
class Simple:
"""This class handles the arguments"""
def __init__(self):
common_init(self)
def init_args(self):
parser = argparse.ArgumentParser(
description='PyTorch PennTreeBank/WikiText2 RNN/LSTM Language Model',
conflict_handler='resolve', allow_abbrev=False)
add_common_args(parser, "simple")
parser.add_argument('--dropout', type=float,
default=0.35, help="Probability to keep")
parser.add_argument('--momentum', type=float,
default=0.0, help="Momentum of the optimizer")
parser.add_argument('--lr-decay', type=float,
default=0.87, help="Decay of learning rate")
parser.add_argument('--lr-decay-start', type=int,
default=0, help="Epochs when lr decay starts")
args = parser.parse_args()
return args
class Emotions:
"""This class handles the arguments"""
def __init__(self):
# Don't use the common init for the moment
# common_init(self)
self.args = self.init_args()
if self.args.continue_train and self.args.model_dir is None:
raise Exception("'--model-dir' must be specified when using "
"'--continue-train'")
prepare_dir(self.args)
self.logger = get_logger(self.args)
set_utils_logger(self.logger)
np.random.seed(self.args.seed)
random.seed(self.args.seed)
torch.manual_seed(self.args.seed)
init_device(self.args)
save_args(self.args)
save_commit_id(self.args)
self.tb = TensorBoard(self.args.model_dir)
def init_args(self):
# batch_size: 8
# lr: 1e-6
# optimizer: adam
parser = argparse.ArgumentParser(
description='PyTorch IEMOCAP RNN/LSTM Emotion detection',
conflict_handler='resolve', allow_abbrev=False)
add_common_args(parser, "emotions_simple")
parser.add_argument('--dropout', type=float,
default=0.35, help="Probability to keep")
parser.add_argument('--momentum', type=float,
default=0.0, help="Momentum of the optimizer")
parser.add_argument('--lr-decay', type=float,
default=0.87, help="Decay of learning rate")
parser.add_argument('--lr-decay-start', type=int,
default=0, help="Epochs when lr decay starts")
parser.add_argument('--cv', type=int,
default=5, help="Cross-validation split")
parser.add_argument('--weighted', type=bool,
default=True, help="Weighed los in case of "
"unbalanced dataset")
parser.add_argument('--window-size', type=int,
default=500, help="Number of frames")
parser.add_argument('--step-size', type=float,
default=0.1, help="Percentage of the window")
parser.add_argument("--order", type=str, required=True,
choices=['complete_random', 'local_order',
'standard_order', 'total_order'],
help="The order to use as data-selection")
parser.add_argument('--data', type=str,
default='data/IEMOCAP/all_features_cv/',
help='location of the data corpus')
parser.add_argument('--optimizer', type=str, default='adam',
help='optimizer to use (sgd, adam)')
args = parser.parse_args()
return args
class AWD:
"""This class handles the arguments"""
def __init__(self):
common_init(self)
def init_args(self):
parser = argparse.ArgumentParser(
description='PyTorch PennTreeBank/WikiText2 RNN/LSTM Language Model',
conflict_handler='resolve', allow_abbrev=False)
add_common_args(parser, "awd")
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net (LSTM, QRNN, GRU)')
parser.add_argument('--dropout', type=float, default=0.4,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--dropouth', type=float, default=0.3,
help='dropout for rnn layers (0 = no dropout)')
parser.add_argument('--dropouti', type=float, default=0.65,
help='dropout for input embedding layers (0 = no dropout)')
parser.add_argument('--dropoute', type=float, default=0.1,
help='dropout to remove words from embedding layer (0 = no dropout)')
parser.add_argument('--wdrop', type=float, default=0.5,
help='amount of weight dropout to apply to the RNN hidden to hidden matrix')
parser.add_argument('--nonmono', type=int, default=5,
help='random seed')
parser.add_argument('--alpha', type=float, default=2,
help='alpha L2 regularization on RNN activation (alpha = 0 means no regularization)')
parser.add_argument('--beta', type=float, default=1,
help='beta slowness regularization applied on RNN activiation (beta = 0 means no regularization)')
parser.add_argument('--wdecay', type=float, default=1.2e-6,
help='weight decay applied to all weights')
parser.add_argument('--resume', type=str, default='',
help='path of model to resume')
parser.add_argument('--optimizer', type=str, default='sgd',
help='optimizer to use (sgd, adam)')
# Our custum parameters
parser.add_argument('--batch-max', type=int, default=128,
help='Maximum number of data point in a batch')
parser.add_argument('--policy-every', type=int, default=-1,
help='Steps when to update the policy')
parser.add_argument('--policy-retarder', type=int, default=1,
help='Multiplicator of the --policy-every')
parser.add_argument('--size-bdrop', type=int, default="-1",
help='Which batch size we drop half batch')
parser.add_argument('--bdrop-epochs', nargs="+", type=int, default=[-1],
help='Which epoch we drop half batch')
parser.add_argument('--init-seq', type=str, default="original",
help='Initialization of the ds.current_seq '
'(original, one, overlap_2, overlapC_2 (contiguous), '
'overlapCP_2 (contiguous-pruned), overlapCR_2 (contiguous-row), '
'overlapCF_2 (contiguous-fake), rotate_2, random_rotate, transposed')
parser.add_argument('--get-priors', action="store_true",
help="Computes loss of each batch")
parser.add_argument('--update-random-rotate', action="store_true",
help="Rotates the current_seq randomly at each epoch using seed-shuffle")
parser.add_argument('--fixedbsize-epochs', nargs="+", type=int, default=[-1],
help='Which epoch we fill the batches according to scores')
parser.add_argument('--fixedbsize-policy', type=str, default="original",
help='Policy of the fixed batch size. By default it sorts using the score '
'Possible values: (original, combined)')
parser.add_argument('--window-end', type=int, default="-1",
help='At which epoch the window reaches the end of every batches')
parser.add_argument('--reverse-score', action="store_true",
help="Instead of selecting higher is better, selects lower is better")
parser.add_argument('--shuffle-chunks', type=int, default=-1,
help="Shuffles the train tokens by N chunks")
parser.add_argument('--shuffle-chunks-size', type=int, default=-1,
help="Shuffles the train tokens by chunks of N size")
parser.add_argument('--embed-func', type=str, default='original',
help="Type of embedding function used", choices=['original', 'mmul'])
parser.add_argument('--save-grad', action="store_true",
help="Saves the grd wrt to the input.")
parser.add_argument('--save-gradPure', action="store_true",
help="Saves the grad wrt to the input but backwarding the output, not the loss.")
parser.add_argument("--grad-interval", type=int, default=20,
help="Which epoch interval we save the grads.")
args = parser.parse_args()
return args
class MOS:
"""This class handles the arguments"""
def __init__(self):
common_init(self)
def init_args(self):
parser = argparse.ArgumentParser(
description='PyTorch PennTreeBank/WikiText2 RNN/LSTM Language Model',
conflict_handler='resolve', allow_abbrev=False)
add_common_args(parser, "mos")
parser.add_argument('--model', type=str, default='LSTM',
help='type of recurrent net '
'(RNN_TANH, RNN_RELU, LSTM, GRU, SRU)')
parser.add_argument('--nhidlast', type=int, default=-1,
help='number of hidden units for the last rnn layer')
parser.add_argument('--dropout', type=float, default=0.4,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--dropouth', type=float, default=0.3,
help='dropout for rnn layers (0 = no dropout)')
parser.add_argument('--dropouti', type=float, default=0.65,
help='dropout for input embedding layers (0 = no dropout)')
parser.add_argument('--dropoute', type=float, default=0.1,
help='dropout to remove words from embedding layer '
'(0 = no dropout)')
parser.add_argument('--dropoutl', type=float, default=-0.2,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--wdrop', type=float, default=0.5,
help='amount of weight dropout to apply to the RNN hidden '
'to hidden matrix')
parser.add_argument('--tied', action='store_false',
help='tie the word embedding and softmax weights')
parser.add_argument('--nonmono', type=int, default=5,
help='random seed')
parser.add_argument('--alpha', type=float, default=2,
help='alpha L2 regularization on RNN activation '
'(alpha = 0 means no regularization)')
parser.add_argument('--beta', type=float, default=1,
help='beta slowness regularization applied on RNN '
'activiation (beta = 0 means no regularization)')
parser.add_argument('--n-experts', type=int, default=10,
help='number of experts')
parser.add_argument('--small-batch-size', type=int, default=-1,
help='the batch size for computation. batch_size should '
'be divisible by small_batch_size. In our implementation, '
'we compute gradients with small_batch_size multiple, '
'times and accumulate the gradients until batch_size is '
'reached. An update step is then performed.')
parser.add_argument('--max-seq-len-delta', type=int, default=40,
help='max sequence length')
parser.add_argument('--single-gpu', default=False, action='store_true',
help='use single GPU')
args = parser.parse_args()
return args
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Parse only the main model argument")
parser.add_argument("--main-model", type=str, required=True,
choices=["simple-lstm", "awd-lstm",
"mos-lstm", "emotions-simple-lstm", "awd-lstm-repetitions"],
help="The main model to use.")
args, remaining = parser.parse_known_args()
if args.main_model == "simple-lstm":
from simple import main
elif args.main_model == "mos-lstm":
from mos import main
elif args.main_model == "awd-lstm":
from awd import main
elif args.main_model == "awd-lstm-repetitions":
from awd import repetitions_main as main
elif args.main_model == "emotions-simple-lstm":
from emotions import main