-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnaive.py
163 lines (139 loc) · 4.37 KB
/
naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Naive segmentation algorithm based on region growing and shrinking
import os
import numpy as np
from PIL import Image
def get_seeds(H, W, n):
hs = np.random.choice(range(H), size=(n,))
ws = np.random.choice(range(W), size=(n,))
out = []
for i in range(n):
out.append((hs[i], ws[i]))
return out
def get_adjacent(pixel, H, W, visited):
x = pixel[0]
y = pixel[1]
out = []
for a in range(x-1, x+2):
for b in range(y-1, y+2):
if not (a == x and b == y):
if not (a > x or a < 0 or b < 0 or b > y):
coord = (a,b)
if not coord in visited:
out.append(coord)
return out
def is_similar(color1, color2, eps=320):
return np.linalg.norm(color1 - color2) < eps
def prune(sets):
merged = True
while merged:
merged = False
results = []
while sets:
common, rest = sets[0], sets[1:]
sets = []
for x in rest:
if x.isdisjoint(common):
sets.append(x)
else:
merged = True
common |= x
results.append(common)
sets = results
return sets
def get_regions(img, seeds):
H, W, C = img.shape
new_img = np.zeros(img.shape)
colors = [img[seed[0], seed[1]] for seed in seeds]
regions = []
for i,seed in enumerate(seeds):
region = set()
color = img[seed[0], seed[1]]
neighbors = [(seed[0], seed[1])]
visited = set()
while len(neighbors) > 0:
here = neighbors.pop()
region.add(here)
adjacent_pixels = get_adjacent(here, H, W, visited)
for adj in adjacent_pixels:
visited.add(adj)
adj_color = img[adj[0], adj[1]]
if is_similar(color, adj_color):
neighbors.append(adj)
regions.append(region)
regions = prune(regions)
return regions
def get_cluster(coord, regions):
for i,region in enumerate(regions):
if coord in region:
return i
return -1
def get_new_img(img, regions):
colors = np.random.choice(range(256), size=(len(regions),3))
new_img = np.zeros(img.shape)
H, W, C = img.shape
for h in range(H):
for w in range(W):
cluster = get_cluster((h, w), regions)
if not cluster == -1:
new_img[h,w,:] = colors[cluster,:]
return new_img
def segment_image(filename):
img = Image.open(filename).convert('RGB')
img = np.array(img)
H, W, C = img.shape
n = 20
seeds = get_seeds(H, W, n)
regions = get_regions(img, seeds)
new_img = get_new_img(img, regions)
return new_img
def convert_label(image):
H, W, C = image.shape
pixels = {}
i = 0
for h in range(H):
for w in range(W):
pixel = tuple(image[h,w])
if not pixel in pixels:
pixels[pixel] = i
i += 1
new_image = np.zeros((H,W,1))
for h in range(H):
for w in range(W):
pixel = tuple(image[h,w])
new_image[h,w] = pixels[pixel]
return new_image
def convert_back(label):
H, W, _ = label.shape
new = np.zeros((H,W,3))
for h in range(H):
for w in range(W):
new[h, w, :] = label[h,w]
return new
def evaluate_algo():
path = 'data/bob_ross/images/'
files = [f for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))]
labels_path = 'data/bob_ross/labels/'
mse = 0
min_mse = float('inf')
for name in files:
filename = path + name
segmented = segment_image(filename)
segmented = convert_label(segmented)
labelname = labels_path + name
label = Image.open(labelname).convert('RGB')
label = np.array(label)
label = convert_label(label)
curr_mse = np.mean((segmented-label)**2)
if curr_mse < min_mse:
min_mse = curr_mse
segmented = convert_back(segmented)
im = Image.fromarray(segmented.astype(np.uint8))
im.save("br_segmented.png")
label = convert_back(label)
im = Image.fromarray(label.astype(np.uint8))
im.save("br_label.png")
mse += curr_mse
print(f"MSE: {mse}")
if __name__ == '__main__':
evaluate_algo()
#segment_image('pic.jpg')