-
Notifications
You must be signed in to change notification settings - Fork 11
/
train_npy.py
192 lines (138 loc) · 5.46 KB
/
train_npy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
from torch.utils.data import DataLoader
import timm
from datasets.dataset import NPY_datasets
from tensorboardX import SummaryWriter
from models.vmunet.vmunet_v2 import VMUNetV2
from engine import *
import os
import sys
from utils import *
from configs.config_setting_v2 import setting_config
import warnings
warnings.filterwarnings("ignore")
def main(config):
print('#----------Creating logger----------#')
sys.path.append(config.work_dir + '/')
log_dir = os.path.join(config.work_dir, 'log')
checkpoint_dir = os.path.join(config.work_dir, 'checkpoints')
resume_model = os.path.join(checkpoint_dir, 'latest.pth')
outputs = os.path.join(config.work_dir, 'outputs')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
if not os.path.exists(outputs):
os.makedirs(outputs)
global logger
logger = get_logger('train', log_dir)
global writer
writer = SummaryWriter(config.work_dir + 'summary')
log_config_info(config, logger)
print('#----------GPU init----------#')
os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu_id
set_seed(config.seed)
torch.cuda.empty_cache()
print('#----------Preparing dataset----------#')
train_dataset = NPY_datasets(config.data_path, config, train=True)
train_loader = DataLoader(train_dataset,
batch_size=config.batch_size,
shuffle=True,
pin_memory=True,
num_workers=config.num_workers)
val_dataset = NPY_datasets(config.data_path, config, train=False)
val_loader = DataLoader(val_dataset,
batch_size=1,
shuffle=False,
pin_memory=True,
num_workers=config.num_workers,
drop_last=True)
print('#----------Prepareing Model----------#')
model_cfg = config.model_config
if config.network == 'vmunet-v2':
model = VMUNetV2(
num_classes=model_cfg['num_classes'],
input_channels=model_cfg['input_channels'],
depths=model_cfg['depths'],
depths_decoder=model_cfg['depths_decoder'],
drop_path_rate=model_cfg['drop_path_rate'],
load_ckpt_path=model_cfg['load_ckpt_path'],
deep_supervision = model_cfg['deep_supervision'],
)
model.load_from()
else: raise Exception('network in not right!')
model = model.cuda()
cal_params_flops(model, 256, logger)
print('#----------Prepareing loss, opt, sch and amp----------#')
criterion = config.criterion
optimizer = get_optimizer(config, model)
scheduler = get_scheduler(config, optimizer)
print('#----------Set other params----------#')
min_loss = 999
start_epoch = 1
min_epoch = 1
if os.path.exists(resume_model):
print('#----------Resume Model and Other params----------#')
checkpoint = torch.load(resume_model, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
saved_epoch = checkpoint['epoch']
start_epoch += saved_epoch
min_loss, min_epoch, loss = checkpoint['min_loss'], checkpoint['min_epoch'], checkpoint['loss']
log_info = f'resuming model from {resume_model}. resume_epoch: {saved_epoch}, min_loss: {min_loss:.4f}, min_epoch: {min_epoch}, loss: {loss:.4f}'
logger.info(log_info)
step = 0
print('#----------Training----------#')
for epoch in range(start_epoch, config.epochs + 1):
torch.cuda.empty_cache()
step = train_one_epoch(
train_loader,
model,
criterion,
optimizer,
scheduler,
epoch,
step,
logger,
config,
writer
)
loss = val_one_epoch(
val_loader,
model,
criterion,
epoch,
logger,
config
)
if loss < min_loss:
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'best.pth'))
min_loss = loss
min_epoch = epoch
torch.save(
{
'epoch': epoch,
'min_loss': min_loss,
'min_epoch': min_epoch,
'loss': loss,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
}, os.path.join(checkpoint_dir, 'latest.pth'))
if os.path.exists(os.path.join(checkpoint_dir, 'best.pth')):
print('#----------Testing----------#')
best_weight = torch.load(config.work_dir + 'checkpoints/best.pth', map_location=torch.device('cpu'))
model.load_state_dict(best_weight)
loss = test_one_epoch(
val_loader,
model,
criterion,
logger,
config,
)
os.rename(
os.path.join(checkpoint_dir, 'best.pth'),
os.path.join(checkpoint_dir, f'best-epoch{min_epoch}-loss{min_loss:.4f}.pth')
)
if __name__ == '__main__':
config = setting_config
main(config)