forked from LongSoft/UEFITool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathffsengine.cpp
4672 lines (4105 loc) · 193 KB
/
ffsengine.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* ffsengine.cpp
Copyright (c) 2015, Nikolaj Schlej. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHWARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*/
#include <math.h>
#include "ffsengine.h"
#include "types.h"
#include "treemodel.h"
#include "descriptor.h"
#include "ffs.h"
#include "gbe.h"
#include "me.h"
#include "Tiano/EfiTianoCompress.h"
#include "Tiano/EfiTianoDecompress.h"
#include "LZMA/LzmaCompress.h"
#include "LZMA/LzmaDecompress.h"
#ifdef _CONSOLE
#include <iostream>
#endif
QString errorMessage(UINT8 errorCode)
{
switch (errorCode) {
case ERR_SUCCESS: return QObject::tr("Success");
case ERR_NOT_IMPLEMENTED: return QObject::tr("Not implemented");
case ERR_INVALID_PARAMETER: return QObject::tr("Function called with invalid parameter");
case ERR_BUFFER_TOO_SMALL: return QObject::tr("Buffer too small");
case ERR_OUT_OF_RESOURCES: return QObject::tr("Out of resources");
case ERR_OUT_OF_MEMORY: return QObject::tr("Out of memory");
case ERR_FILE_OPEN: return QObject::tr("File can't be opened");
case ERR_FILE_READ: return QObject::tr("File can't be read");
case ERR_FILE_WRITE: return QObject::tr("File can't be written");
case ERR_ITEM_NOT_FOUND: return QObject::tr("Item not found");
case ERR_UNKNOWN_ITEM_TYPE: return QObject::tr("Unknown item type");
case ERR_INVALID_FLASH_DESCRIPTOR: return QObject::tr("Invalid flash descriptor");
case ERR_INVALID_REGION: return QObject::tr("Invalid region");
case ERR_EMPTY_REGION: return QObject::tr("Empty region");
case ERR_BIOS_REGION_NOT_FOUND: return QObject::tr("BIOS region not found");
case ERR_VOLUMES_NOT_FOUND: return QObject::tr("UEFI volumes not found");
case ERR_INVALID_VOLUME: return QObject::tr("Invalid UEFI volume");
case ERR_VOLUME_REVISION_NOT_SUPPORTED: return QObject::tr("Volume revision not supported");
case ERR_VOLUME_GROW_FAILED: return QObject::tr("Volume grow failed");
case ERR_UNKNOWN_FFS: return QObject::tr("Unknown file system");
case ERR_INVALID_FILE: return QObject::tr("Invalid file");
case ERR_INVALID_SECTION: return QObject::tr("Invalid section");
case ERR_UNKNOWN_SECTION: return QObject::tr("Unknown section");
case ERR_STANDARD_COMPRESSION_FAILED: return QObject::tr("Standard compression failed");
case ERR_CUSTOMIZED_COMPRESSION_FAILED: return QObject::tr("Customized compression failed");
case ERR_STANDARD_DECOMPRESSION_FAILED: return QObject::tr("Standard decompression failed");
case ERR_CUSTOMIZED_DECOMPRESSION_FAILED: return QObject::tr("Customized compression failed");
case ERR_UNKNOWN_COMPRESSION_ALGORITHM: return QObject::tr("Unknown compression method");
case ERR_UNKNOWN_EXTRACT_MODE: return QObject::tr("Unknown extract mode");
case ERR_UNKNOWN_INSERT_MODE: return QObject::tr("Unknown insert mode");
case ERR_UNKNOWN_IMAGE_TYPE: return QObject::tr("Unknown executable image type");
case ERR_UNKNOWN_PE_OPTIONAL_HEADER_TYPE: return QObject::tr("Unknown PE optional header type");
case ERR_UNKNOWN_RELOCATION_TYPE: return QObject::tr("Unknown relocation type");
case ERR_GENERIC_CALL_NOT_SUPPORTED: return QObject::tr("Generic call not supported");
case ERR_VOLUME_BASE_NOT_FOUND: return QObject::tr("Volume base address not found");
case ERR_PEI_CORE_ENTRY_POINT_NOT_FOUND: return QObject::tr("PEI core entry point not found");
case ERR_COMPLEX_BLOCK_MAP: return QObject::tr("Block map structure too complex for correct analysis");
case ERR_DIR_ALREADY_EXIST: return QObject::tr("Directory already exists");
case ERR_DIR_CREATE: return QObject::tr("Directory can't be created");
case ERR_UNKNOWN_PATCH_TYPE: return QObject::tr("Unknown patch type");
case ERR_PATCH_OFFSET_OUT_OF_BOUNDS: return QObject::tr("Patch offset out of bounds");
case ERR_INVALID_SYMBOL: return QObject::tr("Invalid symbol");
case ERR_NOTHING_TO_PATCH: return QObject::tr("Nothing to patch");
case ERR_DEPEX_PARSE_FAILED: return QObject::tr("Dependency expression parsing failed");
case ERR_TRUNCATED_IMAGE: return QObject::tr("Image is truncated");
case ERR_BAD_RELOCATION_ENTRY: return QObject::tr("Bad image relocation entry");
default: return QObject::tr("Unknown error %1").arg(errorCode);
}
}
FfsEngine::FfsEngine(QObject *parent)
: QObject(parent)
{
model = new TreeModel();
oldPeiCoreEntryPoint = 0;
newPeiCoreEntryPoint = 0;
dumped = false;
}
FfsEngine::~FfsEngine(void)
{
delete model;
}
TreeModel* FfsEngine::treeModel() const
{
return model;
}
void FfsEngine::msg(const QString & message, const QModelIndex & index)
{
#ifndef _DISABLE_ENGINE_MESSAGES
#ifndef _CONSOLE
messageItems.enqueue(MessageListItem(message, NULL, 0, index));
#else
(void) index;
std::cout << message.toLatin1().constData() << std::endl;
#endif
#else
(void)message;
(void)index;
#endif
}
#ifndef _CONSOLE
QQueue<MessageListItem> FfsEngine::messages() const
{
return messageItems;
}
void FfsEngine::clearMessages()
{
messageItems.clear();
}
#endif
bool FfsEngine::hasIntersection(const UINT32 begin1, const UINT32 end1, const UINT32 begin2, const UINT32 end2)
{
if (begin1 < begin2 && begin2 < end1)
return true;
if (begin1 < end2 && end2 < end1)
return true;
if (begin2 < begin1 && begin1 < end2)
return true;
if (begin2 < end1 && end1 < end2)
return true;
return false;
}
// Firmware image parsing
UINT8 FfsEngine::parseImageFile(const QByteArray & buffer)
{
oldPeiCoreEntryPoint = 0;
newPeiCoreEntryPoint = 0;
// Check buffer size to be more then or equal to size of EFI_CAPSULE_HEADER
if ((UINT32)buffer.size() <= sizeof(EFI_CAPSULE_HEADER)) {
msg(tr("parseImageFile: image file is smaller then minimum size of %1h (%2) bytes").hexarg(sizeof(EFI_CAPSULE_HEADER)).arg(sizeof(EFI_CAPSULE_HEADER)));
return ERR_INVALID_PARAMETER;
}
// Check buffer for being normal EFI capsule header
UINT32 capsuleHeaderSize = 0;
QModelIndex index;
if (buffer.startsWith(EFI_CAPSULE_GUID)
|| buffer.startsWith(INTEL_CAPSULE_GUID)) {
// Get info
const EFI_CAPSULE_HEADER* capsuleHeader = (const EFI_CAPSULE_HEADER*)buffer.constData();
capsuleHeaderSize = capsuleHeader->HeaderSize;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
QString name = tr("UEFI capsule");
QString info = tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
.arg(guidToQString(capsuleHeader->CapsuleGuid))
.hexarg(buffer.size()).arg(buffer.size())
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize)
.hexarg(capsuleHeader->CapsuleImageSize).arg(capsuleHeader->CapsuleImageSize)
.hexarg2(capsuleHeader->Flags, 8);
// Add tree item
index = model->addItem(Types::Capsule, Subtypes::UefiCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
}
// Check buffer for being Toshiba capsule header
else if (buffer.startsWith(TOSHIBA_CAPSULE_GUID)) {
// Get info
const TOSHIBA_CAPSULE_HEADER* capsuleHeader = (const TOSHIBA_CAPSULE_HEADER*)buffer.constData();
capsuleHeaderSize = capsuleHeader->HeaderSize;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
QString name = tr("UEFI capsule");
QString info = tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
.arg(guidToQString(capsuleHeader->CapsuleGuid))
.hexarg(buffer.size()).arg(buffer.size())
.hexarg(capsuleHeader->HeaderSize).arg(capsuleHeader->HeaderSize)
.hexarg(capsuleHeader->FullSize - capsuleHeader->HeaderSize).arg(capsuleHeader->FullSize - capsuleHeader->HeaderSize)
.hexarg2(capsuleHeader->Flags, 8);
// Add tree item
index = model->addItem(Types::Capsule, Subtypes::ToshibaCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
}
// Check buffer for being extended Aptio signed capsule header
else if (buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID) || buffer.startsWith(APTIO_UNSIGNED_CAPSULE_GUID)) {
// Get info
bool signedCapsule = buffer.startsWith(APTIO_SIGNED_CAPSULE_GUID);
const APTIO_CAPSULE_HEADER* capsuleHeader = (const APTIO_CAPSULE_HEADER*)buffer.constData();
capsuleHeaderSize = capsuleHeader->RomImageOffset;
QByteArray header = buffer.left(capsuleHeaderSize);
QByteArray body = buffer.right(buffer.size() - capsuleHeaderSize);
QString name = tr("AMI Aptio capsule");
QString info = tr("Capsule GUID: %1\nFull size: %2h (%3)\nHeader size: %4h (%5)\nImage size: %6h (%7)\nFlags: %8h")
.arg(guidToQString(capsuleHeader->CapsuleHeader.CapsuleGuid))
.hexarg(buffer.size()).arg(buffer.size())
.hexarg(capsuleHeaderSize).arg(capsuleHeaderSize)
.hexarg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize).arg(capsuleHeader->CapsuleHeader.CapsuleImageSize - capsuleHeaderSize)
.hexarg2(capsuleHeader->CapsuleHeader.Flags, 8);
//!TODO: more info about Aptio capsule
// Add tree item
index = model->addItem(Types::Capsule, signedCapsule ? Subtypes::AptioSignedCapsule : Subtypes::AptioUnsignedCapsule, COMPRESSION_ALGORITHM_NONE, name, "", info, header, body);
// Show message about possible Aptio signature break
if (signedCapsule) {
msg(tr("parseImageFile: Aptio capsule signature may become invalid after image modifications"), index);
}
}
// Skip capsule header to have flash chip image
QByteArray flashImage = buffer.right(buffer.size() - capsuleHeaderSize);
// Check for Intel flash descriptor presence
const FLASH_DESCRIPTOR_HEADER* descriptorHeader = (const FLASH_DESCRIPTOR_HEADER*)flashImage.constData();
// Check descriptor signature
UINT8 result;
if (descriptorHeader->Signature == FLASH_DESCRIPTOR_SIGNATURE) {
// Parse as Intel image
QModelIndex imageIndex;
result = parseIntelImage(flashImage, imageIndex, index);
if (result != ERR_INVALID_FLASH_DESCRIPTOR)
return result;
}
// Get info
QString name = tr("UEFI image");
QString info = tr("Full size: %1h (%2)")
.hexarg(flashImage.size()).arg(flashImage.size());
// Add tree item
index = model->addItem(Types::Image, Subtypes::UefiImage, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), flashImage, index);
return parseBios(flashImage, index);
}
UINT8 FfsEngine::parseIntelImage(const QByteArray & intelImage, QModelIndex & index, const QModelIndex & parent)
{
// Sanity check
if (intelImage.isEmpty())
return EFI_INVALID_PARAMETER;
// Store the beginning of descriptor as descriptor base address
const UINT8* descriptor = (const UINT8*)intelImage.constData();
UINT32 descriptorBegin = 0;
UINT32 descriptorEnd = FLASH_DESCRIPTOR_SIZE;
// Check for buffer size to be greater or equal to descriptor region size
if (intelImage.size() < FLASH_DESCRIPTOR_SIZE) {
msg(tr("parseIntelImage: input file is smaller than minimum descriptor size of 1000h (4096) bytes"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Parse descriptor map
const FLASH_DESCRIPTOR_MAP* descriptorMap = (const FLASH_DESCRIPTOR_MAP*)(descriptor + sizeof(FLASH_DESCRIPTOR_HEADER));
const FLASH_DESCRIPTOR_UPPER_MAP* upperMap = (const FLASH_DESCRIPTOR_UPPER_MAP*)(descriptor + FLASH_DESCRIPTOR_UPPER_MAP_BASE);
// Check sanity of base values
if (descriptorMap->MasterBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->MasterBase == descriptorMap->RegionBase
|| descriptorMap->MasterBase == descriptorMap->ComponentBase) {
msg(tr("parseIntelImage: invalid descriptor master base %1h").hexarg2(descriptorMap->MasterBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->RegionBase > FLASH_DESCRIPTOR_MAX_BASE
|| descriptorMap->RegionBase == descriptorMap->ComponentBase) {
msg(tr("parseIntelImage: invalid descriptor region base %1h").hexarg2(descriptorMap->RegionBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorMap->ComponentBase > FLASH_DESCRIPTOR_MAX_BASE) {
msg(tr("parseIntelImage: invalid descriptor component base %1h").hexarg2(descriptorMap->ComponentBase, 2));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
const FLASH_DESCRIPTOR_REGION_SECTION* regionSection = (const FLASH_DESCRIPTOR_REGION_SECTION*)calculateAddress8(descriptor, descriptorMap->RegionBase);
const FLASH_DESCRIPTOR_COMPONENT_SECTION* componentSection = (const FLASH_DESCRIPTOR_COMPONENT_SECTION*)calculateAddress8(descriptor, descriptorMap->ComponentBase);
// Check descriptor version by getting hardcoded value of FlashParameters.ReadClockFrequency
UINT8 descriptorVersion = 0;
if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_20MHZ) // Old descriptor
descriptorVersion = 1;
else if (componentSection->FlashParameters.ReadClockFrequency == FLASH_FREQUENCY_17MHZ) // Skylake+ descriptor
descriptorVersion = 2;
else {
msg(tr("parseIntelImage: unknown descriptor version with ReadClockFrequency %1h").hexarg(componentSection->FlashParameters.ReadClockFrequency));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// ME region
QByteArray me;
UINT32 meBegin = 0;
UINT32 meEnd = 0;
if (regionSection->MeLimit) {
meBegin = calculateRegionOffset(regionSection->MeBase);
meEnd = calculateRegionSize(regionSection->MeBase, regionSection->MeLimit);
me = intelImage.mid(meBegin, meEnd);
meEnd += meBegin;
}
// BIOS region
QByteArray bios;
UINT32 biosBegin = 0;
UINT32 biosEnd = 0;
if (regionSection->BiosLimit) {
biosBegin = calculateRegionOffset(regionSection->BiosBase);
biosEnd = calculateRegionSize(regionSection->BiosBase, regionSection->BiosLimit);
// Check for Gigabyte specific descriptor map
if (biosEnd - biosBegin == (UINT32)intelImage.size()) {
if (!meEnd) {
msg(tr("parseIntelImage: can't determine BIOS region start from Gigabyte-specific descriptor"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
biosBegin = meEnd;
bios = intelImage.mid(biosBegin, biosEnd);
// biosEnd will point to the end of the image file
// it may be wrong, but it's pretty hard to detect a padding after BIOS region
// with malformed descriptor
}
// Normal descriptor map
else {
bios = intelImage.mid(biosBegin, biosEnd);
// Calculate biosEnd
biosEnd += biosBegin;
}
}
else {
msg(tr("parseIntelImage: descriptor parsing failed, BIOS region not found in descriptor"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// GbE region
QByteArray gbe;
UINT32 gbeBegin = 0;
UINT32 gbeEnd = 0;
if (regionSection->GbeLimit) {
gbeBegin = calculateRegionOffset(regionSection->GbeBase);
gbeEnd = calculateRegionSize(regionSection->GbeBase, regionSection->GbeLimit);
gbe = intelImage.mid(gbeBegin, gbeEnd);
gbeEnd += gbeBegin;
}
// PDR region
QByteArray pdr;
UINT32 pdrBegin = 0;
UINT32 pdrEnd = 0;
if (regionSection->PdrLimit) {
pdrBegin = calculateRegionOffset(regionSection->PdrBase);
pdrEnd = calculateRegionSize(regionSection->PdrBase, regionSection->PdrLimit);
pdr = intelImage.mid(pdrBegin, pdrEnd);
pdrEnd += pdrBegin;
}
// EC region
QByteArray ec;
UINT32 ecBegin = 0;
UINT32 ecEnd = 0;
if (descriptorVersion == 2) {
if (regionSection->EcLimit) {
pdrBegin = calculateRegionOffset(regionSection->EcBase);
pdrEnd = calculateRegionSize(regionSection->EcBase, regionSection->EcLimit);
pdr = intelImage.mid(ecBegin, ecEnd);
ecEnd += ecBegin;
}
}
// Check for intersections between regions
// Descriptor
if (hasIntersection(descriptorBegin, descriptorEnd, gbeBegin, gbeEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with GbE region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(descriptorBegin, descriptorEnd, meBegin, meEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with ME region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(descriptorBegin, descriptorEnd, biosBegin, biosEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with BIOS region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(descriptorBegin, descriptorEnd, pdrBegin, pdrEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with PDR region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorVersion == 2 && hasIntersection(descriptorBegin, descriptorEnd, ecBegin, ecEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, descriptor region has intersection with EC region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// GbE
if (hasIntersection(gbeBegin, gbeEnd, meBegin, meEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with ME region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(gbeBegin, gbeEnd, biosBegin, biosEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with BIOS region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(gbeBegin, gbeEnd, pdrBegin, pdrEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with PDR region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorVersion == 2 && hasIntersection(gbeBegin, gbeEnd, ecBegin, ecEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, GbE region has intersection with EC region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// ME
if (hasIntersection(meBegin, meEnd, biosBegin, biosEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, ME region has intersection with BIOS region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (hasIntersection(meBegin, meEnd, pdrBegin, pdrEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, ME region has intersection with PDR region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorVersion == 2 && hasIntersection(meBegin, meEnd, ecBegin, ecEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, ME region has intersection with EC region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// BIOS
if (hasIntersection(biosBegin, biosEnd, pdrBegin, pdrEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, BIOS region has intersection with PDR region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
if (descriptorVersion == 2 && hasIntersection(biosBegin, biosEnd, ecBegin, ecEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, BIOS region has intersection with EC region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// PDR
if (descriptorVersion == 2 && hasIntersection(pdrBegin, pdrEnd, ecBegin, ecEnd)) {
msg(tr("parseIntelImage: descriptor parsing failed, PDR region has intersection with EC region"));
return ERR_INVALID_FLASH_DESCRIPTOR;
}
// Region map is consistent
// Intel image
QString name = tr("Intel image");
QString info = tr("Full size: %1h (%2)\nFlash chips: %3\nMasters: %4\nPCH straps: %5\nCPU straps: %6\n")
.hexarg(intelImage.size()).arg(intelImage.size())
.arg(descriptorMap->NumberOfFlashChips + 1)
.arg(descriptorMap->NumberOfMasters + 1)
.arg(descriptorMap->NumberOfPchStraps)
.arg(descriptorMap->NumberOfProcStraps);
// Add Intel image tree item
index = model->addItem(Types::Image, Subtypes::IntelImage, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), intelImage, parent);
// Descriptor
// Get descriptor info
QByteArray body = intelImage.left(FLASH_DESCRIPTOR_SIZE);
name = tr("Descriptor region");
info = tr("Full size: %1h (%2)").hexarg(FLASH_DESCRIPTOR_SIZE).arg(FLASH_DESCRIPTOR_SIZE);
// Check regions presence once again
QVector<UINT32> offsets;
if (regionSection->GbeLimit) {
offsets.append(gbeBegin);
info += tr("\nGbE region offset: %1h").hexarg(gbeBegin);
}
if (regionSection->MeLimit) {
offsets.append(meBegin);
info += tr("\nME region offset: %1h").hexarg(meBegin);
}
if (regionSection->BiosLimit) {
offsets.append(biosBegin);
info += tr("\nBIOS region offset: %1h").hexarg(biosBegin);
}
if (regionSection->PdrLimit) {
offsets.append(pdrBegin);
info += tr("\nPDR region offset: %1h").hexarg(pdrBegin);
}
if (descriptorVersion == 2 && regionSection->EcLimit) {
offsets.append(ecBegin);
info += tr("\nEC region offset: %1h").hexarg(ecBegin);
}
// Region access settings
if (descriptorVersion == 1) {
const FLASH_DESCRIPTOR_MASTER_SECTION* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION*)calculateAddress8(descriptor, descriptorMap->MasterBase);
info += tr("\nRegion access settings:");
info += tr("\nBIOS:%1%2h ME:%3%4h GbE:%5%6h")
.hexarg2(masterSection->BiosRead, 2)
.hexarg2(masterSection->BiosWrite, 2)
.hexarg2(masterSection->MeRead, 2)
.hexarg2(masterSection->MeWrite, 2)
.hexarg2(masterSection->GbeRead, 2)
.hexarg2(masterSection->GbeWrite, 2);
// BIOS access table
info += tr("\nBIOS access table:");
info += tr("\n Read Write");
info += tr("\nDesc %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
info += tr("\nBIOS Yes Yes");
info += tr("\nME %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
info += tr("\nGbE %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
info += tr("\nPDR %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
}
else if (descriptorVersion == 2) {
const FLASH_DESCRIPTOR_MASTER_SECTION_V2* masterSection = (const FLASH_DESCRIPTOR_MASTER_SECTION_V2*)calculateAddress8(descriptor, descriptorMap->MasterBase);
info += tr("\nRegion access settings:");
info += tr("\nBIOS: %1h %2h ME: %3h %4h\nGbE: %5h %6h EC: %7h %8h")
.hexarg2(masterSection->BiosRead, 3)
.hexarg2(masterSection->BiosWrite, 3)
.hexarg2(masterSection->MeRead, 3)
.hexarg2(masterSection->MeWrite, 3)
.hexarg2(masterSection->GbeRead, 3)
.hexarg2(masterSection->GbeWrite, 3)
.hexarg2(masterSection->EcRead, 3)
.hexarg2(masterSection->EcWrite, 3);
// BIOS access table
info += tr("\nBIOS access table:");
info += tr("\n Read Write");
info += tr("\nDesc %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_DESC ? "Yes " : "No ");
info += tr("\nBIOS Yes Yes");
info += tr("\nME %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_ME ? "Yes " : "No ");
info += tr("\nGbE %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_GBE ? "Yes " : "No ");
info += tr("\nPDR %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_PDR ? "Yes " : "No ");
info += tr("\nEC %1 %2")
.arg(masterSection->BiosRead & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ")
.arg(masterSection->BiosWrite & FLASH_DESCRIPTOR_REGION_ACCESS_EC ? "Yes " : "No ");
}
// VSCC table
const VSCC_TABLE_ENTRY* vsccTableEntry = (const VSCC_TABLE_ENTRY*)(descriptor + ((UINT16)upperMap->VsccTableBase << 4));
info += tr("\nFlash chips in VSCC table:");
UINT8 vsscTableSize = upperMap->VsccTableSize * sizeof(UINT32) / sizeof(VSCC_TABLE_ENTRY);
for (int i = 0; i < vsscTableSize; i++) {
info += tr("\n%1%2%3h")
.hexarg2(vsccTableEntry->VendorId, 2)
.hexarg2(vsccTableEntry->DeviceId0, 2)
.hexarg2(vsccTableEntry->DeviceId1, 2);
vsccTableEntry++;
}
// Add descriptor tree item
model->addItem(Types::Region, Subtypes::DescriptorRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), body, index);
// Sort regions in ascending order
qSort(offsets);
// Parse regions
UINT8 result = 0;
for (int i = 0; i < offsets.count(); i++) {
// Parse GbE region
if (offsets.at(i) == gbeBegin) {
QModelIndex gbeIndex;
result = parseGbeRegion(gbe, gbeIndex, index);
}
// Parse ME region
else if (offsets.at(i) == meBegin) {
QModelIndex meIndex;
result = parseMeRegion(me, meIndex, index);
}
// Parse BIOS region
else if (offsets.at(i) == biosBegin) {
QModelIndex biosIndex;
result = parseBiosRegion(bios, biosIndex, index);
}
// Parse PDR region
else if (offsets.at(i) == pdrBegin) {
QModelIndex pdrIndex;
result = parsePdrRegion(pdr, pdrIndex, index);
}
// Parse EC region
else if (descriptorVersion == 2 && offsets.at(i) == ecBegin) {
QModelIndex ecIndex;
result = parseEcRegion(ec, ecIndex, index);
}
if (result)
return result;
}
// Add the data after the last region as padding
UINT32 IntelDataEnd = 0;
UINT32 LastRegionOffset = offsets.last();
if (LastRegionOffset == gbeBegin)
IntelDataEnd = gbeEnd;
else if (LastRegionOffset == meBegin)
IntelDataEnd = meEnd;
else if (LastRegionOffset == biosBegin)
IntelDataEnd = biosEnd;
else if (LastRegionOffset == pdrBegin)
IntelDataEnd = pdrEnd;
else if (descriptorVersion == 2 && LastRegionOffset == ecBegin)
IntelDataEnd = ecEnd;
if (IntelDataEnd > (UINT32)intelImage.size()) { // Image file is truncated
msg(tr("parseIntelImage: image size %1 (%2) is smaller than the end of last region %3 (%4), may be damaged")
.hexarg(intelImage.size()).arg(intelImage.size())
.hexarg(IntelDataEnd).arg(IntelDataEnd), index);
return ERR_TRUNCATED_IMAGE;
}
else if (IntelDataEnd < (UINT32)intelImage.size()) { // Insert padding
QByteArray padding = intelImage.mid(IntelDataEnd);
// Get info
name = tr("Padding");
info = tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, index);
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseGbeRegion(const QByteArray & gbe, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
{
// Check sanity
if (gbe.isEmpty())
return ERR_EMPTY_REGION;
// Get info
QString name = tr("GbE region");
const GBE_MAC_ADDRESS* mac = (const GBE_MAC_ADDRESS*)gbe.constData();
const GBE_VERSION* version = (const GBE_VERSION*)(gbe.constData() + GBE_VERSION_OFFSET);
QString info = tr("Full size: %1h (%2)\nMAC: %3:%4:%5:%6:%7:%8\nVersion: %9.%10")
.hexarg(gbe.size()).arg(gbe.size())
.hexarg2(mac->vendor[0], 2)
.hexarg2(mac->vendor[1], 2)
.hexarg2(mac->vendor[2], 2)
.hexarg2(mac->device[0], 2)
.hexarg2(mac->device[1], 2)
.hexarg2(mac->device[2], 2)
.arg(version->major)
.arg(version->minor);
// Add tree item
index = model->addItem(Types::Region, Subtypes::GbeRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), gbe, parent, mode);
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseMeRegion(const QByteArray & me, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
{
// Check sanity
if (me.isEmpty())
return ERR_EMPTY_REGION;
// Get info
QString name = tr("ME region");
QString info = tr("Full size: %1h (%2)").
hexarg(me.size()).arg(me.size());
// Parse region
bool versionFound = true;
bool emptyRegion = false;
// Check for empty region
if (me.count() == me.count('\xFF') || me.count() == me.count('\x00')) {
// Further parsing not needed
emptyRegion = true;
info += tr("\nState: empty");
}
else {
// Search for new signature
INT32 versionOffset = me.indexOf(ME_VERSION_SIGNATURE2);
if (versionOffset < 0){ // New signature not found
// Search for old signature
versionOffset = me.indexOf(ME_VERSION_SIGNATURE);
if (versionOffset < 0){
info += tr("\nVersion: unknown");
versionFound = false;
}
}
// Add version information
if (versionFound) {
const ME_VERSION* version = (const ME_VERSION*)(me.constData() + versionOffset);
info += tr("\nVersion: %1.%2.%3.%4")
.arg(version->major)
.arg(version->minor)
.arg(version->bugfix)
.arg(version->build);
}
}
// Add tree item
index = model->addItem(Types::Region, Subtypes::MeRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), me, parent, mode);
// Show messages
if (emptyRegion) {
msg(tr("parseRegion: ME region is empty"), index);
}
else if (!versionFound) {
msg(tr("parseRegion: ME region version is unknown, it can be damaged"), index);
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::parsePdrRegion(const QByteArray & pdr, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
{
// Check sanity
if (pdr.isEmpty())
return ERR_EMPTY_REGION;
// Get info
QString name = tr("PDR region");
QString info = tr("Full size: %1h (%2)").
hexarg(pdr.size()).arg(pdr.size());
// Add tree item
index = model->addItem(Types::Region, Subtypes::PdrRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), pdr, parent, mode);
// Parse PDR region as BIOS space
UINT8 result = parseBios(pdr, index);
if (result && result != ERR_VOLUMES_NOT_FOUND && result != ERR_INVALID_VOLUME)
return result;
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseEcRegion(const QByteArray & ec, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
{
// Check sanity
if (ec.isEmpty())
return ERR_EMPTY_REGION;
// Get info
QString name = tr("EC region");
QString info = tr("Full size: %1h (%2)").
hexarg(ec.size()).arg(ec.size());
// Add tree item
index = model->addItem(Types::Region, Subtypes::EcRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), ec, parent, mode);
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseBiosRegion(const QByteArray & bios, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
{
if (bios.isEmpty())
return ERR_EMPTY_REGION;
// Get info
QString name = tr("BIOS region");
QString info = tr("Full size: %1h (%2)").
hexarg(bios.size()).arg(bios.size());
// Add tree item
index = model->addItem(Types::Region, Subtypes::BiosRegion, COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), bios, parent, mode);
return parseBios(bios, index);
}
UINT32 FfsEngine::getPaddingType(const QByteArray & padding)
{
if (padding.count('\x00') == padding.count())
return Subtypes::ZeroPadding;
if (padding.count('\xFF') == padding.count())
return Subtypes::OnePadding;
return Subtypes::DataPadding;
}
UINT8 FfsEngine::parseBios(const QByteArray & bios, const QModelIndex & parent)
{
// Search for first volume
UINT32 prevVolumeOffset;
UINT8 result;
result = findNextVolume(bios, 0, prevVolumeOffset);
if (result)
return result;
// First volume is not at the beginning of BIOS space
QString name;
QString info;
if (prevVolumeOffset > 0) {
// Get info
QByteArray padding = bios.left(prevVolumeOffset);
name = tr("Padding");
info = tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, parent);
}
// Search for and parse all volumes
UINT32 volumeOffset = prevVolumeOffset;
UINT32 prevVolumeSize = 0;
UINT32 volumeSize = 0;
UINT32 bmVolumeSize = 0;
while (true)
{
bool msgAlignmentBitsSet = false;
bool msgUnaligned = false;
bool msgUnknownRevision = false;
bool msgSizeMismach = false;
// Padding between volumes
if (volumeOffset > prevVolumeOffset + prevVolumeSize) {
UINT32 paddingSize = volumeOffset - prevVolumeOffset - prevVolumeSize;
QByteArray padding = bios.mid(prevVolumeOffset + prevVolumeSize, paddingSize);
// Get info
name = tr("Padding");
info = tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, parent);
}
// Get volume size
result = getVolumeSize(bios, volumeOffset, volumeSize, bmVolumeSize);
if (result) {
msg(tr("parseBios: getVolumeSize failed with error \"%1\"").arg(errorMessage(result)), parent);
return result;
}
// Check that volume is fully present in input
if (volumeSize > (UINT32)bios.size() || volumeOffset + volumeSize > (UINT32)bios.size()) {
msg(tr("parseBios: one of volumes inside overlaps the end of data"), parent);
return ERR_INVALID_VOLUME;
}
// Check reported size against a size calculated using block map
if (volumeSize != bmVolumeSize)
msgSizeMismach = true;
// Check volume revision and alignment
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
UINT32 alignment;
if (volumeHeader->Revision == 1) {
// Acquire alignment capability bit
bool alignmentCap = volumeHeader->Attributes & EFI_FVB_ALIGNMENT_CAP;
if (!alignmentCap) {
if (volumeHeader->Attributes & 0xFFFF0000)
msgAlignmentBitsSet = true;
}
}
else if (volumeHeader->Revision == 2) {
// Acquire alignment
alignment = (UINT32)pow(2.0, (int)(volumeHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16);
// Check alignment
if (volumeOffset % alignment)
msgUnaligned = true;
}
else
msgUnknownRevision = true;
// Parse volume
QModelIndex index;
UINT8 result = parseVolume(bios.mid(volumeOffset, volumeSize), index, parent);
if (result)
msg(tr("parseBios: volume parsing failed with error \"%1\"").arg(errorMessage(result)), parent);
// Show messages
if (msgAlignmentBitsSet)
msg("parseBios: alignment bits set on volume without alignment capability", index);
if (msgUnaligned)
msg(tr("parseBios: unaligned revision 2 volume"), index);
if (msgUnknownRevision)
msg(tr("parseBios: unknown volume revision %1").arg(volumeHeader->Revision), index);
if (msgSizeMismach)
msg(tr("parseBios: volume size stored in header %1h (%2) differs from calculated using block map %3h (%4)")
.hexarg(volumeSize).arg(volumeSize)
.hexarg(bmVolumeSize).arg(bmVolumeSize),
index);
// Go to next volume
prevVolumeOffset = volumeOffset;
prevVolumeSize = volumeSize;
result = findNextVolume(bios, volumeOffset + prevVolumeSize, volumeOffset);
if (result) {
UINT32 endPaddingSize = bios.size() - prevVolumeOffset - prevVolumeSize;
// Padding at the end of BIOS space
if (endPaddingSize > 0) {
QByteArray padding = bios.right(endPaddingSize);
// Get info
name = tr("Padding");
info = tr("Full size: %1h (%2)")
.hexarg(padding.size()).arg(padding.size());
// Add tree item
model->addItem(Types::Padding, getPaddingType(padding), COMPRESSION_ALGORITHM_NONE, name, "", info, QByteArray(), padding, parent);
}
break;
}
}
return ERR_SUCCESS;
}
UINT8 FfsEngine::findNextVolume(const QByteArray & bios, UINT32 volumeOffset, UINT32 & nextVolumeOffset)
{
int nextIndex = bios.indexOf(EFI_FV_SIGNATURE, volumeOffset);
if (nextIndex < EFI_FV_SIGNATURE_OFFSET) {
return ERR_VOLUMES_NOT_FOUND;
}
nextVolumeOffset = nextIndex - EFI_FV_SIGNATURE_OFFSET;
return ERR_SUCCESS;
}
UINT8 FfsEngine::getVolumeSize(const QByteArray & bios, UINT32 volumeOffset, UINT32 & volumeSize, UINT32 & bmVolumeSize)
{
// Check that there is space for the volume header and at least two block map entries.
if ((UINT32)bios.size() < volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER) + 2 * sizeof(EFI_FV_BLOCK_MAP_ENTRY))
return ERR_INVALID_VOLUME;
// Populate volume header
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(bios.constData() + volumeOffset);
// Check volume signature
if (QByteArray((const char*)&volumeHeader->Signature, sizeof(volumeHeader->Signature)) != EFI_FV_SIGNATURE)
return ERR_INVALID_VOLUME;
// Calculate volume size using BlockMap
const EFI_FV_BLOCK_MAP_ENTRY* entry = (const EFI_FV_BLOCK_MAP_ENTRY*)(bios.constData() + volumeOffset + sizeof(EFI_FIRMWARE_VOLUME_HEADER));
UINT32 calcVolumeSize = 0;
while (entry->NumBlocks != 0 && entry->Length != 0) {
if ((void*)entry > bios.constData() + bios.size())
return ERR_INVALID_VOLUME;
calcVolumeSize += entry->NumBlocks * entry->Length;
entry += 1;
}
volumeSize = volumeHeader->FvLength;
bmVolumeSize = calcVolumeSize;
if (volumeSize == 0)
return ERR_INVALID_VOLUME;
return ERR_SUCCESS;
}
UINT8 FfsEngine::parseVolume(const QByteArray & volume, QModelIndex & index, const QModelIndex & parent, const UINT8 mode)
{
// Check that there is space for the volume header
if ((UINT32)volume.size() < sizeof(EFI_FIRMWARE_VOLUME_HEADER)) {
msg(tr("parseVolume: input volume size %1h (%2) is smaller than volume header size 40h (64)").hexarg(volume.size()).arg(volume.size()));
return ERR_INVALID_VOLUME;
}
// Populate volume header
const EFI_FIRMWARE_VOLUME_HEADER* volumeHeader = (const EFI_FIRMWARE_VOLUME_HEADER*)(volume.constData());
// Check sanity of HeaderLength value
if (ALIGN8(volumeHeader->HeaderLength) > volume.size()) {
msg(tr("parseVolume: volume header overlaps the end of data"));
return ERR_INVALID_VOLUME;
}
// Check sanity of ExtHeaderOffset value
if (volumeHeader->ExtHeaderOffset > 0
&& (UINT32)volume.size() < ALIGN8(volumeHeader->ExtHeaderOffset + sizeof(EFI_FIRMWARE_VOLUME_EXT_HEADER))) {
msg(tr("parseVolume: extended volume header overlaps the end of data"));
return ERR_INVALID_VOLUME;
}
// Calculate volume header size
UINT32 headerSize;
if (volumeHeader->Revision > 1 && volumeHeader->ExtHeaderOffset) {
const EFI_FIRMWARE_VOLUME_EXT_HEADER* extendedHeader = (const EFI_FIRMWARE_VOLUME_EXT_HEADER*)(volume.constData() + volumeHeader->ExtHeaderOffset);
headerSize = volumeHeader->ExtHeaderOffset + extendedHeader->ExtHeaderSize;
}
else
headerSize = volumeHeader->HeaderLength;
// Sanity check after some new crazy MSI images
headerSize = ALIGN8(headerSize);
// Check for volume structure to be known
bool volumeIsUnknown = true;
// Check for FFS v2 volume
if (FFSv2Volumes.contains(QByteArray::fromRawData((const char*)volumeHeader->FileSystemGuid.Data, sizeof(EFI_GUID)))) {
volumeIsUnknown = false;
}
// Check attributes
// Determine value of empty byte
char empty = volumeHeader->Attributes & EFI_FVB_ERASE_POLARITY ? '\xFF' : '\x00';