-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
131 lines (111 loc) · 5.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
if __name__ == '__main__':
import os
from argparse import ArgumentParser, Namespace
import json
import yaml
import torch
from torch.nn import CrossEntropyLoss
from utils import get_dataset, get_experim_name, get_network, get_optimiser, get_lr_scheduler, get_palette, set_seed
from utils.running_score import RunningScore
from trainer import Trainer
# parse arguments
parser = ArgumentParser("NamedMask")
parser.add_argument("--p_config", type=str, default="", required=True)
parser.add_argument("--p_state_dict", type=str, default=None)
parser.add_argument("--single_category", type=str, nargs='*', default=None)
parser.add_argument("--n_clusters", type=int, default=None)
parser.add_argument("--cluster_id", type=int, default=None)
parser.add_argument("--gpu_id", type=int, default=0)
parser.add_argument("--debug", "-d", action="store_true")
parser.add_argument("--seed", "-s", default=0, type=int)
parser.add_argument("--suffix", type=str, default='')
args = parser.parse_args()
args: Namespace = parser.parse_args()
base_args = yaml.safe_load(open(f"{args.p_config}", 'r'))
args: dict = vars(args)
args.update(base_args)
args: Namespace = Namespace(**args)
set_seed(args.seed)
experim_name: str = get_experim_name(args)
if isinstance(args.single_category, list):
assert args.n_clusters is not None
dir_ckpt: str = f"{args.dir_ckpt}/{args.dataset_name}/{args.split}/{args.clustering_type}/n_experts_{args.n_clusters}/{experim_name}"
else:
dir_ckpt: str = f"{args.dir_ckpt}/{args.dataset_name}/{args.split}/{experim_name}"
dir_dt_masks = f"{dir_ckpt}/dt"
if os.path.exists(f"{dir_dt_masks}/final_model.pt") and args.single_category is not None:
print(f"already final model exists at {dir_dt_masks}/final_model.pt.")
exit(0)
os.makedirs(dir_dt_masks, exist_ok=True)
print(f"\n====={dir_ckpt} is created.=====\n")
json.dump(vars(args), open(f"{dir_ckpt}/config.json", 'w'), indent=2, sort_keys=True)
# device setting
device: torch.device = torch.device("cuda:0")
# instantiate a training dataloader
train_dataloader = get_dataset(
dataset_name="imagenet",
dir_dataset=args.dir_train_dataset,
split="train",
image_size=args.train_image_size,
ignore_index=1000 if "imagenet-s" in args.dataset_name else 255,
categories=args.categories,
category_to_p_images_fp=args.category_to_p_images_fp,
n_images=args.n_images,
max_n_masks=args.max_n_masks,
scale_range=args.scale_range,
single_category=args.single_category,
use_expert_pseudo_masks=args.use_expert_pseudo_masks,
category_agnostic=args.category_agnostic, # arguments for laion-5b and imagenet-s
imagenet_s_category_to_wnid_label_id=args.imagenet_s_category_to_wnid_label_id if "imagenet-s" == args.dataset_name else None,
eval_dataset_name=args.dataset_name,
**args.train_dataloader_kwargs
)
# instantiate a validation dataloader
if "voc" in args.dataset_name or "imagenet" in args.dataset_name or not args.category_agnostic:
val_dataloader = get_dataset(
dir_dataset=args.dir_val_dataset,
n_categories=args.n_categories,
dataset_name=args.dataset_name,
split=args.split,
single_category=args.single_category,
categories=args.categories,
category_agnostic=args.category_agnostic,
**args.val_dataloader_kwargs
)
n_categories = val_dataloader.dataset.n_categories
ignore_index = val_dataloader.dataset.ignore_index
else:
val_dataloader = None
n_categories = args.n_categories
ignore_index = 255
# instantiate a segmentation network
network = get_network(network_name=args.segmenter_name, n_categories=n_categories).to(device)
n_params = sum(param.numel() for param in network.parameters())
print(f"# visual encoder params: {n_params}")
# instantiate a loss function
criterion = CrossEntropyLoss(ignore_index=ignore_index)
# instantiate a metric meter
metric_meter = RunningScore(n_categories)
# instantiate an optimiser
optimiser = get_optimiser(network=network)
# instantiate a learning rate scheduler
lr_scheduler = get_lr_scheduler(optimiser=optimiser, n_iters=args.n_iters)
# instantiate a visualiser
palette = get_palette(args.dataset_name)
# instantiate a trainer
trainer = Trainer(network=network, device=device, dir_ckpt=dir_dt_masks, palette=palette, debug=args.debug)
if args.p_state_dict is None:
trainer.fit(
dataloader=train_dataloader,
criterion=criterion,
optimiser=optimiser,
n_iters=args.n_iters,
lr_scheduler=lr_scheduler,
metric_meter=metric_meter,
iter_eval=args.iter_eval,
iter_log=args.iter_log,
val_dataloader=val_dataloader
)
else:
state_dict = torch.load(args.p_state_dict)
trainer.evaluate(dataloader=val_dataloader, num_iter=0, iter_eval=args.iter_eval, state_dict=state_dict)