-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathcsat.rs
552 lines (498 loc) · 25.8 KB
/
csat.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
use std::{cmp::Ordering, collections::HashSet};
use acir::{
native_types::{Expression, Witness},
AcirField,
};
use indexmap::IndexMap;
/// Minimum width accepted by the `CSatTransformer`.
pub const MIN_EXPRESSION_WIDTH: usize = 3;
/// A transformer which processes any [`Expression`]s to break them up such that they
/// fit within the [`ProofSystemCompiler`][crate::ProofSystemCompiler]'s width.
///
/// This transformer is only used when targeting the [`Bounded`][crate::ExpressionWidth::Bounded] configuration.
///
/// This is done by creating intermediate variables to hold partial calculations and then combining them
/// to calculate the original expression.
// Should we give it all of the opcodes?
// Have a single transformer that you instantiate with a width, then pass many opcodes through
pub(crate) struct CSatTransformer {
width: usize,
/// Track the witness that can be solved
solvable_witness: HashSet<Witness>,
}
impl CSatTransformer {
/// Create an optimizer with a given width.
///
/// Panics if `width` is less than `MIN_EXPRESSION_WIDTH`.
pub(crate) fn new(width: usize) -> CSatTransformer {
assert!(width >= MIN_EXPRESSION_WIDTH, "width has to be at least {MIN_EXPRESSION_WIDTH}");
CSatTransformer { width, solvable_witness: HashSet::new() }
}
/// Check if the equation 'expression=0' can be solved, and if yes, add the solved witness to set of solvable witness
fn try_solve<F>(&mut self, opcode: &Expression<F>) {
let mut unresolved = Vec::new();
for (_, w1, w2) in &opcode.mul_terms {
if !self.solvable_witness.contains(w1) {
unresolved.push(w1);
if !self.solvable_witness.contains(w2) {
return;
}
}
if !self.solvable_witness.contains(w2) {
unresolved.push(w2);
if !self.solvable_witness.contains(w1) {
return;
}
}
}
for (_, w) in &opcode.linear_combinations {
if !self.solvable_witness.contains(w) {
unresolved.push(w);
}
}
if unresolved.len() == 1 {
self.mark_solvable(*unresolved[0]);
}
}
/// Adds the witness to set of solvable witness
pub(crate) fn mark_solvable(&mut self, witness: Witness) {
self.solvable_witness.insert(witness);
}
// Still missing dead witness optimization.
// To do this, we will need the whole set of assert-zero opcodes
// I think it can also be done before the local optimization seen here, as dead variables will come from the user
pub(crate) fn transform<F: AcirField>(
&mut self,
opcode: Expression<F>,
intermediate_variables: &mut IndexMap<Expression<F>, (F, Witness)>,
num_witness: &mut u32,
) -> Expression<F> {
// Here we create intermediate variables and constrain them to be equal to any subset of the polynomial that can be represented as a full opcode
let opcode =
self.full_opcode_scan_optimization(opcode, intermediate_variables, num_witness);
// The last optimization to do is to create intermediate variables in order to flatten the fan-in and the amount of mul terms
// If a opcode has more than one mul term. We may need an intermediate variable for each one. Since not every variable will need to link to
// the mul term, we could possibly do it that way.
// We wil call this a partial opcode scan optimization which will result in the opcodes being able to fit into the correct width
let mut opcode =
self.partial_opcode_scan_optimization(opcode, intermediate_variables, num_witness);
opcode.sort();
self.try_solve(&opcode);
opcode
}
// This optimization will search for combinations of terms which can be represented in a single assert-zero opcode
// Case 1 : qM * wL * wR + qL * wL + qR * wR + qO * wO + qC
// This polynomial does not require any further optimizations, it can be safely represented in one opcode
// ie a polynomial with 1 mul(bi-variate) term and 3 (univariate) terms where 2 of those terms match the bivariate term
// wL and wR, we can represent it in one opcode
// GENERALIZED for WIDTH: instead of the number 3, we use `WIDTH`
//
//
// Case 2: qM * wL * wR + qL * wL + qR * wR + qO * wO + qC + qM2 * wL2 * wR2 + qL * wL2 + qR * wR2 + qO * wO2 + qC2
// This polynomial cannot be represented using one assert-zero opcode.
//
// This algorithm will first extract the first full opcode(if possible):
// t = qM * wL * wR + qL * wL + qR * wR + qO * wO + qC
//
// The polynomial now looks like so t + qM2 * wL2 * wR2 + qL * wL2 + qR * wR2 + qO * wO2 + qC2
// This polynomial cannot be represented using one assert-zero opcode.
//
// This algorithm will then extract the second full opcode(if possible):
// t2 = qM2 * wL2 * wR2 + qL * wL2 + qR * wR2 + qO * wO2 + qC2
//
// The polynomial now looks like so t + t2
// We can no longer extract another full opcode, hence the algorithm terminates. Creating two intermediate variables t and t2.
// This stage of preprocessing does not guarantee that all polynomials can fit into a opcode. It only guarantees that all full opcodes have been extracted from each polynomial
fn full_opcode_scan_optimization<F: AcirField>(
&mut self,
mut opcode: Expression<F>,
intermediate_variables: &mut IndexMap<Expression<F>, (F, Witness)>,
num_witness: &mut u32,
) -> Expression<F> {
// We pass around this intermediate variable IndexMap, so that we do not create intermediate variables that we have created before
// One instance where this might happen is t1 = wL * wR and t2 = wR * wL
// First check that this is not a simple opcode which does not need optimization
//
// If the opcode only has one mul term, then this algorithm cannot optimize it any further
// Either it can be represented in a single arithmetic equation or it's fan-in is too large and we need intermediate variables for those
// large-fan-in optimization is not this algorithms purpose.
// If the opcode has 0 mul terms, then it is an add opcode and similarly it can either fit into a single assert-zero opcode or it has a large fan-in
if opcode.mul_terms.len() <= 1 {
return opcode;
}
// We now know that this opcode has multiple mul terms and can possibly be simplified into multiple full opcodes
// We need to create a (wl, wr) IndexMap and then check the simplified fan-in to verify if we have terms both with wl and wr
// In general, we can then push more terms into the opcode until we are at width-1 then the last variable will be the intermediate variable
//
// This will be our new opcode which will be equal to `self` except we will have intermediate variables that will be constrained to any
// subset of the terms that can be represented as full opcodes
let mut new_opcode = Expression::default();
let mut remaining_mul_terms = Vec::with_capacity(opcode.mul_terms.len());
for pair in opcode.mul_terms {
// We want to layout solvable intermediate variable, if we cannot solve one of the witness
// that means the intermediate opcode will not be immediately solvable
if !self.solvable_witness.contains(&pair.1) || !self.solvable_witness.contains(&pair.2)
{
remaining_mul_terms.push(pair);
continue;
}
// Check if this pair is present in the simplified fan-in
// We are assuming that the fan-in/fan-out has been simplified.
// Note this function is not public, and can only be called within the optimize method, so this guarantee will always hold
let index_wl =
opcode.linear_combinations.iter().position(|(_scale, witness)| *witness == pair.1);
let index_wr =
opcode.linear_combinations.iter().position(|(_scale, witness)| *witness == pair.2);
match (index_wl, index_wr) {
(None, _) => {
// This means that the polynomial does not contain both terms
// Just push the Qm term as it cannot form a full opcode
new_opcode.mul_terms.push(pair);
}
(_, None) => {
// This means that the polynomial does not contain both terms
// Just push the Qm term as it cannot form a full opcode
new_opcode.mul_terms.push(pair);
}
(Some(x), Some(y)) => {
// This means that we can form a full opcode with this Qm term
// First fetch the left and right wires which match the mul term
let left_wire_term = opcode.linear_combinations[x];
let right_wire_term = opcode.linear_combinations[y];
// Lets create an intermediate opcode to store this full opcode
//
let mut intermediate_opcode = Expression::default();
intermediate_opcode.mul_terms.push(pair);
// Add the left and right wires
intermediate_opcode.linear_combinations.push(left_wire_term);
intermediate_opcode.linear_combinations.push(right_wire_term);
// Remove the left and right wires so we do not re-add them
match x.cmp(&y) {
Ordering::Greater => {
opcode.linear_combinations.remove(x);
opcode.linear_combinations.remove(y);
}
Ordering::Less => {
opcode.linear_combinations.remove(y);
opcode.linear_combinations.remove(x);
}
Ordering::Equal => {
opcode.linear_combinations.remove(x);
intermediate_opcode.linear_combinations.pop();
}
}
// Now we have used up 2 spaces in our assert-zero opcode. The width now dictates, how many more we can add
let mut remaining_space = self.width - 2 - 1; // We minus 1 because we need an extra space to contain the intermediate variable
// Keep adding terms until we have no more left, or we reach the width
let mut remaining_linear_terms =
Vec::with_capacity(opcode.linear_combinations.len());
while remaining_space > 0 {
if let Some(wire_term) = opcode.linear_combinations.pop() {
// Add this element into the new opcode
if self.solvable_witness.contains(&wire_term.1) {
intermediate_opcode.linear_combinations.push(wire_term);
remaining_space -= 1;
} else {
remaining_linear_terms.push(wire_term);
}
} else {
// No more usable elements left in the old opcode
break;
}
}
opcode.linear_combinations.extend(remaining_linear_terms);
// Constraint this intermediate_opcode to be equal to the temp variable by adding it into the IndexMap
// We need a unique name for our intermediate variable
// XXX: Another optimization, which could be applied in another algorithm
// If two opcodes have a large fan-in/out and they share a few common terms, then we should create intermediate variables for them
// Do some sort of subset matching algorithm for this on the terms of the polynomial
let inter_var = Self::get_or_create_intermediate_vars(
intermediate_variables,
intermediate_opcode,
num_witness,
);
// Add intermediate variable to the new opcode instead of the full opcode
self.mark_solvable(inter_var.1);
new_opcode.linear_combinations.push(inter_var);
}
};
}
opcode.mul_terms = remaining_mul_terms;
// Add the rest of the elements back into the new_opcode
new_opcode.mul_terms.extend(opcode.mul_terms);
new_opcode.linear_combinations.extend(opcode.linear_combinations);
new_opcode.q_c = opcode.q_c;
new_opcode.sort();
new_opcode
}
/// Normalize an expression by dividing it by its first coefficient
/// The first coefficient here means coefficient of the first linear term, or of the first quadratic term if no linear terms exist.
/// The function panic if the input expression is constant
fn normalize<F: AcirField>(mut expr: Expression<F>) -> (F, Expression<F>) {
expr.sort();
let a = if !expr.linear_combinations.is_empty() {
expr.linear_combinations[0].0
} else {
expr.mul_terms[0].0
};
(a, &expr * a.inverse())
}
/// Get or generate a scaled intermediate witness which is equal to the provided expression
/// The sets of previously generated witness and their (normalized) expression is cached in the intermediate_variables map
/// If there is no cache hit, we generate a new witness (and add the expression to the cache)
/// else, we return the cached witness along with the scaling factor so it is equal to the provided expression
fn get_or_create_intermediate_vars<F: AcirField>(
intermediate_variables: &mut IndexMap<Expression<F>, (F, Witness)>,
expr: Expression<F>,
num_witness: &mut u32,
) -> (F, Witness) {
let (k, normalized_expr) = Self::normalize(expr);
if intermediate_variables.contains_key(&normalized_expr) {
let (l, iv) = intermediate_variables[&normalized_expr];
(k / l, iv)
} else {
let inter_var = Witness(*num_witness);
*num_witness += 1;
// Add intermediate opcode and variable to map
intermediate_variables.insert(normalized_expr, (k, inter_var));
(F::one(), inter_var)
}
}
// A partial opcode scan optimization aim to create intermediate variables in order to compress the polynomial
// So that it fits within the given width
// Note that this opcode follows the full opcode scan optimization.
// We define the partial width as equal to the full width - 2.
// This is because two of our variables cannot be used as they are linked to the multiplication terms
// Example: qM1 * wL1 * wR2 + qL1 * wL3 + qR1 * wR4+ qR2 * wR5 + qO1 * wO5 + qC
// One thing to note is that the multiplication wires do not match any of the fan-in/out wires. This is guaranteed as we have
// just completed the full opcode optimization algorithm.
//
//Actually we can optimize in two ways here: We can create an intermediate variable which is equal to the fan-in terms
// t = qL1 * wL3 + qR1 * wR4 -> width = 3
// This `t` value can only use width - 1 terms
// The opcode now looks like: qM1 * wL1 * wR2 + t + qR2 * wR5+ qO1 * wO5 + qC
// But this is still not acceptable since wR5 is not wR2, so we need another intermediate variable
// t2 = t + qR2 * wR5
//
// The opcode now looks like: qM1 * wL1 * wR2 + t2 + qO1 * wO5 + qC
// This is still not good, so we do it one more time:
// t3 = t2 + qO1 * wO5
// The opcode now looks like: qM1 * wL1 * wR2 + t3 + qC
//
// Another strategy is to create a temporary variable for the multiplier term and then we can see it as a term in the fan-in
//
// Same Example: qM1 * wL1 * wR2 + qL1 * wL3 + qR1 * wR4+ qR2 * wR5 + qO1 * wO5 + qC
// t = qM1 * wL1 * wR2
// The opcode now looks like: t + qL1 * wL3 + qR1 * wR4+ qR2 * wR5 + qO1 * wO5 + qC
// Still assuming width3, we still need to use width-1 terms for the intermediate variables, however we can stop at an earlier stage because
// the opcode does not need the multiplier term to match with any of the fan-in terms
// t2 = t + qL1 * wL3
// The opcode now looks like: t2 + qR1 * wR4+ qR2 * wR5 + qO1 * wO5 + qC
// t3 = t2 + qR1 * wR4
// The opcode now looks like: t3 + qR2 * wR5 + qO1 * wO5 + qC
// This took the same amount of opcodes, but which one is better when the width increases? Compute this and maybe do both optimizations
// naming : partial_opcode_mul_first_opt and partial_opcode_fan_first_opt
// Also remember that since we did full opcode scan, there is no way we can have a non-zero mul term along with the wL and wR terms being non-zero
//
// Cases, a lot of mul terms, a lot of fan-in terms, 50/50
fn partial_opcode_scan_optimization<F: AcirField>(
&mut self,
mut opcode: Expression<F>,
intermediate_variables: &mut IndexMap<Expression<F>, (F, Witness)>,
num_witness: &mut u32,
) -> Expression<F> {
// We will go for the easiest route, which is to convert all multiplications into additions using intermediate variables
// Then use intermediate variables again to squash the fan-in, so that it can fit into the appropriate width
// First check if this polynomial actually needs a partial opcode optimization
// There is the chance that it fits perfectly within the assert-zero opcode
if fits_in_one_identity(&opcode, self.width) {
return opcode;
}
// 2. Create Intermediate variables for the multiplication opcodes
let mut remaining_mul_terms = Vec::with_capacity(opcode.mul_terms.len());
for mul_term in opcode.mul_terms {
if self.solvable_witness.contains(&mul_term.1)
&& self.solvable_witness.contains(&mul_term.2)
{
let mut intermediate_opcode = Expression::default();
// Push mul term into the opcode
intermediate_opcode.mul_terms.push(mul_term);
// Get an intermediate variable which squashes the multiplication term
let inter_var = Self::get_or_create_intermediate_vars(
intermediate_variables,
intermediate_opcode,
num_witness,
);
// Add intermediate variable as a part of the fan-in for the original opcode
opcode.linear_combinations.push(inter_var);
self.mark_solvable(inter_var.1);
} else {
remaining_mul_terms.push(mul_term);
}
}
// Remove all of the mul terms as we have intermediate variables to represent them now
opcode.mul_terms = remaining_mul_terms;
// We now only have a polynomial with only fan-in/fan-out terms i.e. terms of the form Ax + By + Cd + ...
// Lets create intermediate variables if all of them cannot fit into the width
//
// If the polynomial fits perfectly within the given width, we are finished
if opcode.linear_combinations.len() <= self.width {
return opcode;
}
// Stores the intermediate variables that are used to
// reduce the fan in.
let mut added = Vec::new();
while opcode.linear_combinations.len() > self.width {
// Collect as many terms up to the given width-1 and constrain them to an intermediate variable
let mut intermediate_opcode = Expression::default();
let mut remaining_linear_terms = Vec::with_capacity(opcode.linear_combinations.len());
for term in opcode.linear_combinations {
if self.solvable_witness.contains(&term.1)
&& intermediate_opcode.linear_combinations.len() < self.width - 1
{
intermediate_opcode.linear_combinations.push(term);
} else {
remaining_linear_terms.push(term);
}
}
opcode.linear_combinations = remaining_linear_terms;
let not_full = intermediate_opcode.linear_combinations.len() < self.width - 1;
if intermediate_opcode.linear_combinations.len() > 1 {
let inter_var = Self::get_or_create_intermediate_vars(
intermediate_variables,
intermediate_opcode,
num_witness,
);
self.mark_solvable(inter_var.1);
added.push(inter_var);
}
// The intermediate opcode is not full, but the opcode still has too many terms
if not_full && opcode.linear_combinations.len() > self.width {
unreachable!("Could not reduce the expression");
}
}
// Add back the intermediate variables to
// keep consistency with the original equation.
opcode.linear_combinations.extend(added);
self.partial_opcode_scan_optimization(opcode, intermediate_variables, num_witness)
}
}
/// Checks if this expression can fit into one arithmetic identity
fn fits_in_one_identity<F: AcirField>(expr: &Expression<F>, width: usize) -> bool {
// A Polynomial with more than one mul term cannot fit into one opcode
if expr.mul_terms.len() > 1 {
return false;
};
expr.width() <= width
}
#[cfg(test)]
mod tests {
use super::*;
use acir::{AcirField, FieldElement};
#[test]
fn simple_reduction_smoke_test() {
let a = Witness(0);
let b = Witness(1);
let c = Witness(2);
let d = Witness(3);
// a = b + c + d;
let opcode_a = Expression {
mul_terms: vec![],
linear_combinations: vec![
(FieldElement::one(), a),
(-FieldElement::one(), b),
(-FieldElement::one(), c),
(-FieldElement::one(), d),
],
q_c: FieldElement::zero(),
};
let mut intermediate_variables: IndexMap<
Expression<FieldElement>,
(FieldElement, Witness),
> = IndexMap::new();
let mut num_witness = 4;
let mut optimizer = CSatTransformer::new(3);
optimizer.mark_solvable(b);
optimizer.mark_solvable(c);
optimizer.mark_solvable(d);
let got_optimized_opcode_a =
optimizer.transform(opcode_a, &mut intermediate_variables, &mut num_witness);
// a = b + c + d => a - b - c - d = 0
// For width3, the result becomes:
// a - d + e = 0
// - c - b - e = 0
//
// a - b + e = 0
let e = Witness(4);
let expected_optimized_opcode_a = Expression {
mul_terms: vec![],
linear_combinations: vec![
(FieldElement::one(), a),
(-FieldElement::one(), d),
(FieldElement::one(), e),
],
q_c: FieldElement::zero(),
};
assert_eq!(expected_optimized_opcode_a, got_optimized_opcode_a);
assert_eq!(intermediate_variables.len(), 1);
// e = - c - b
let expected_intermediate_opcode = Expression {
mul_terms: vec![],
linear_combinations: vec![(-FieldElement::one(), c), (-FieldElement::one(), b)],
q_c: FieldElement::zero(),
};
let (_, normalized_opcode) = CSatTransformer::normalize(expected_intermediate_opcode);
assert!(intermediate_variables.contains_key(&normalized_opcode));
assert_eq!(intermediate_variables[&normalized_opcode].1, e);
}
#[test]
fn stepwise_reduction_test() {
let a = Witness(0);
let b = Witness(1);
let c = Witness(2);
let d = Witness(3);
let e = Witness(4);
// a = b + c + d + e;
let opcode_a = Expression {
mul_terms: vec![],
linear_combinations: vec![
(-FieldElement::one(), a),
(FieldElement::one(), b),
(FieldElement::one(), c),
(FieldElement::one(), d),
(FieldElement::one(), e),
],
q_c: FieldElement::zero(),
};
let mut intermediate_variables: IndexMap<
Expression<FieldElement>,
(FieldElement, Witness),
> = IndexMap::new();
let mut num_witness = 4;
let mut optimizer = CSatTransformer::new(3);
optimizer.mark_solvable(a);
optimizer.mark_solvable(c);
optimizer.mark_solvable(d);
optimizer.mark_solvable(e);
let got_optimized_opcode_a =
optimizer.transform(opcode_a, &mut intermediate_variables, &mut num_witness);
// Since b is not known, it cannot be put inside intermediate opcodes, so it must belong to the transformed opcode.
let contains_b = got_optimized_opcode_a.linear_combinations.iter().any(|(_, w)| *w == b);
assert!(contains_b);
}
#[test]
fn recognize_expr_with_single_shared_witness_which_fits_in_single_identity() {
// Regression test for an expression which Zac found which should have been preserved but
// was being split into two expressions.
let expr = Expression {
mul_terms: vec![(-FieldElement::from(555u128), Witness(8), Witness(10))],
linear_combinations: vec![
(FieldElement::one(), Witness(10)),
(FieldElement::one(), Witness(11)),
(-FieldElement::one(), Witness(13)),
],
q_c: FieldElement::zero(),
};
assert!(fits_in_one_identity(&expr, 4));
}
}