forked from PhPeKe/OB1_SAM
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathactivatie.py
96 lines (92 loc) · 5.35 KB
/
activatie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# PK TODO
recognized_lexicon_np * lengtes
for word_index in range(fixation - 2, fixation + 3):
if not recognized_position_flag[word_index]:
# (-POS-tags)
desired_length = len(individual_words[word_index])
# Woorden met juiste lengtes
# 1. recognized
# Matrix 1: goede lengte, 0: verkeerde lengte
# Matrix 2: matrix 1 * recognized, alles wat overblijft is goede lengtem hoogste pakken
activation_dict = {word: value for word, value in zip(lexicon, lexicon_word_activity_np)}
activation_sorted = [(word, value) for word, value in sorted(activation_dict.items(),
key=lambda item: item[1], reverse=True)
if len(word == desired_length)]
highest = activation_sorted[0]
alldata_recognized_append = all_data[fixation_counter]['recognized words indices'].append
allocated_append = allocated_dict[fixation].append
alldata_truerecognized_append = all_data[fixation_counter]['exact recognized words positions'].append
for word in new_recognized_words:
my_print('recognized: ',
amount_of_cycles,
'cycle,',
lexicon[word],
lexicon_word_activity_np[word] / lexicon_thresholds_np[word],
'(ratio crt. activity to threshold)')
alldata_recognized_append(word)
# if yes, words are considered recognized based on similarity of word lengths
# otherwise, words are considered recognized only if they match exactly
# TODO think about regressions, should N be excluded from N-1 when regressed?
# MM: I don't really understand what happens below, but this should be changed anyway
if pm.similarity_based_recognition:
# set the recognition flag to any of the words in a similar if they
# fulfill the word length distance condition
if is_similar_word_length(individual_words[fixation], lexicon[word]):
# todo refixations cause problems, because might be that during
# refix N+1 is recognized before N
# maybe just exclude the word during refixation
# not N-2, N-1,
if word not in already_allocated and not all_data[fixation_counter]['refixated']:
if not recognized_position_flag[fixation] or (amount_of_cycles < 1
and not len(allocated_dict[fixation])):
allocated_append(word)
recognized_position_flag[fixation] = True
# todo remove last appended before actual saccade, maybe == N+1
my_print(('+++ 0',
lexicon[word],
' recognized instead ',
individual_words[fixation]))
elif shift and fixation + 1 < TOTAL_WORDS and is_similar_word_length(individual_words[fixation + 1],
lexicon[word]):
# not N-2, N-1, N
if word not in already_allocated:
recognized_position_flag[fixation + 1] = True
my_print(('+++ +1',
lexicon[word],
' recognized instead ',
individual_words[fixation + 1]))
if fixation - 1 >= 0 and is_similar_word_length(individual_words[fixation - 1], lexicon[word]):
if word not in allocated_dict[fixation - 2]:
recognized_position_flag[fixation - 1] = True
my_print(('+++ -1',
lexicon[word],
' recognized instead ',
individual_words[fixation - 1]))
# TODO make vector comparison
# set the recognition flag for when the exact word is recognized
# (and store its position in the stimulus) this is also used later
# to check which words were not recognized
if individual_to_lexicon_indices[fixation] == word:
alldata_truerecognized_append(fixation)
recognized_word_at_position_flag[fixation] = True
# assert(individual_words[fixation] == lexicon[word])
elif fixation + 1 < TOTAL_WORDS and individual_to_lexicon_indices[fixation + 1] == word:
alldata_truerecognized_append(fixation + 1)
recognized_word_at_position_flag[fixation + 1] = True
# assert(individual_words[fixation+1] == lexicon[word])
elif fixation - 1 >= 0 and individual_to_lexicon_indices[fixation - 1] == word:
alldata_truerecognized_append(fixation - 1)
recognized_word_at_position_flag[fixation - 1] = True
# assert(individual_words[fixation-1] == lexicon[word])
# elif(fixation-2>=0 and individual_to_lexicon_indices[fixation-2]==word):
# alldata_truerecognized_append(fixation-2)
# recognized_word_at_position_flag[fixation-2] = True
# elif(fixation+2<TOTAL_WORDS and individual_to_lexicon_indices[fixation+2] == word):
# alldata_truerecognized_append(fixation+2)
# recognized_word_at_position_flag[fixation] = True
# #assert(individual_words[fixation+2] == lexicon[word])
else:
# use -1 to represent words that are not in the vicinity
alldata_truerecognized_append(-1)
else:
sys.exit("No dissimilar length recognition")