-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreflexive-transitive.m
51 lines (47 loc) · 1.72 KB
/
reflexive-transitive.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
%1. Create an isreflexive function that tests for reflexivity in the same
%way that the issymmetric function tests for symmetry.
%Recall that this function must check if all the diagonal elements are true. (3 marks)
load R.mat
issymmetric(R1) % true
isreflexive(R1) % true
istransitive(R1) % also true, therefore R1 is an equivalence relation
plot(digraph(R1)) % shows a graph made up of 5 disjoint graphs, therefore R1 is an equivalence relation with 5 equivalence classes
%Define Function
function status =isreflexive(A)
[rows, ~] = size(A);
total = 0; %Count through matrix setting diagonals to zero
for i = 1:rows
if A(i,i) == 1
total = total + 1; % increment counter for each row where conditions met
%disp(total)
%disp(A(i,i))
else
end
if total == rows %if xRx for all x exists in A
status = 1; % 1 = true
else
status = 0;
end
end
end
% 2. Create an istransitive function that tests for transitivity.
%Recall that this function returns true if all non-zero elements in
%??2 are accompanied by non-zero (true) elements at the same locations in ??. (5 marks)
function transitive = istransitive(R)
[rows, ~] = size(R);
Rsquared = R*R;
transitive = true; % assumes true. Sets to false if not
for i = 1:rows
if transitive == false
break % exit for loop (i)
end
for j = 1:rows
if Rsquared(i,j) > 0 % if transitive conditions arent met, set to false
if R(i,j) == 0
transitive = false;
break % exit for loop (j)
end
end
end
end
end