-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_glue.py
548 lines (500 loc) · 18.4 KB
/
train_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import random
import time
from functools import partial
import sys
import numpy as np
import paddle
from paddle.io import DataLoader
from paddle.metric import Accuracy
from paddlenlp.datasets import load_dataset
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.transformers import BertForSequenceClassification, BertTokenizer
from model.modeling import MobileBertForSequenceClassification
from model.model_tokenizer import MobileBertTokenizer
from utils.utils import get_scheduler
from paddlenlp.metrics import AccuracyAndF1, Mcc, PearsonAndSpearman
import json
import math
from collections import OrderedDict
FORMAT = "%(asctime)s-%(levelname)s: %(message)s"
logger = logging.getLogger(__name__)
def save_json(data, file_path):
with open(str(file_path), "w", encoding="utf8") as f:
json.dump(data, f, ensure_ascii=False)
METRIC_CLASSES = {
"cola": Mcc,
"sst-2": Accuracy,
"mrpc": AccuracyAndF1,
"sts-b": PearsonAndSpearman,
"qqp": AccuracyAndF1,
"qnli": Accuracy,
"mnli": Accuracy,
"rte": Accuracy,
"wnli": Accuracy,
}
MODEL_CLASSES = {
"bert": (BertForSequenceClassification, BertTokenizer),
"mobilebert": (MobileBertForSequenceClassification, MobileBertTokenizer),
}
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train selected in the list: "
+ ", ".join(METRIC_CLASSES.keys()),
)
parser.add_argument(
"--model_type",
default="mobilebert",
type=str,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default="mobilebert-uncased",
type=str,
help="Path to pre-trained model or shortcut name selected in the list: "
+ ", ".join(
sum(
[
list(classes[-1].pretrained_init_configuration.keys())
for classes in MODEL_CLASSES.values()
],
[],
)
),
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--scheduler_type",
default="cosine_annel",
type=str,
help="scheduler_type.",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--learning_rate",
default=1e-4,
type=float,
help="The initial learning rate for Adam.",
)
parser.add_argument(
"--layer_lr_decay", default=0.8, type=float, help="layer_lr_decay"
)
parser.add_argument(
"--num_train_epochs",
default=3,
type=int,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--logging_steps", type=int, default=100, help="Log every X updates steps."
)
parser.add_argument(
"--save_steps",
type=int,
default=100,
help="Save checkpoint every X updates steps.",
)
parser.add_argument(
"--batch_size",
default=32,
type=int,
help="Batch size per GPU/CPU for training.",
)
parser.add_argument(
"--weight_decay",
default=0.01,
type=float,
help="Weight decay if we apply some.",
)
parser.add_argument(
"--warmup_steps",
default=0,
type=int,
help="Linear warmup over warmup_steps. If > 0: Override warmup_proportion",
)
parser.add_argument(
"--warmup_proportion",
default=0.1,
type=float,
help="Linear warmup proportion over total steps.",
)
parser.add_argument(
"--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument(
"--seed", default=42, type=int, help="random seed for initialization"
)
parser.add_argument(
"--device",
default="gpu",
type=str,
choices=["cpu", "gpu"],
help="The device to select to train the model, is must be cpu/gpu.",
)
parser.add_argument(
"--decay_radio", default=0.9, type=float, help="layer_lr_decay"
)
parser.add_argument(
"--min_lr", default=5e-7, type=float, help="layer_lr_decay"
)
args = parser.parse_args()
return args
def _get_layer_lr_radios(layer_decay=0.8, n_layers=12):
"""Have lower learning rates for layers closer to the input."""
key_to_depths = OrderedDict(
{
"mpnet.embeddings.": 0,
"mpnet.encoder.relative_attention_bias.": 0,
"mpnet.pooler.": n_layers + 2,
"mpnet.classifier.": n_layers + 2,
}
)
for layer in range(n_layers):
key_to_depths[f"mpnet.encoder.layer.{str(layer)}."] = layer + 1
return {
key: (layer_decay ** (n_layers + 2 - depth))
for key, depth in key_to_depths.items()
}
def set_seed(args):
# Use the same data seed(for data shuffle) for all procs to guarantee data
# consistency after sharding.
random.seed(args.seed)
np.random.seed(args.seed)
# Maybe different op seeds(for dropout) for different procs is better. By:
# `paddle.seed(args.seed + paddle.distributed.get_rank())`
paddle.seed(args.seed)
@paddle.no_grad()
def evaluate(model, loss_fct, metric, data_loader):
model.eval()
metric.reset()
for batch in data_loader:
input_ids, segment_ids, labels = batch
logits = model(input_ids)
loss = loss_fct(logits, labels)
correct = metric.compute(logits, labels)
metric.update(correct)
res = metric.accumulate()
if isinstance(metric, AccuracyAndF1):
print(
"eval loss: %f, acc: %s, precision: %s, recall: %s, f1: %s, acc and f1: %s, "
% (
loss.numpy(),
res[0],
res[1],
res[2],
res[3],
res[4],
)
)
elif isinstance(metric, Mcc):
logger.info("eval loss: %f, mcc: %s, " % (loss.numpy(), res[0]))
elif isinstance(metric, PearsonAndSpearman):
logger.info(
"eval loss: %f, pearson: %s, spearman: %s, pearson and spearman: %s, "
% (loss.numpy(), res[0], res[1], res[2]),
end="",
)
else:
logger.info("eval loss: %f, acc: %s, " % (loss.numpy(), res))
model.train()
def convert_example(example, tokenizer, label_list, max_seq_length=512, is_test=False):
"""convert a glue example into necessary features"""
if not is_test:
# `label_list == None` is for regression task
label_dtype = "int64" if label_list else "float32"
# Get the label
label = example["labels"]
label = np.array([label], dtype=label_dtype)
# Convert raw text to feature
if (int(is_test) + len(example)) == 2:
example = tokenizer(example["sentence"], max_seq_len=max_seq_length)
else:
example = tokenizer(
example["sentence1"],
text_pair=example["sentence2"],
max_seq_len=max_seq_length,
)
if not is_test:
return example["input_ids"], example["token_type_ids"], label
else:
return example["input_ids"], example["token_type_ids"]
def do_train(args):
paddle.set_device(args.device)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[
logging.FileHandler(
os.path.join(os.path.dirname(args.output_dir), "run.log"),
mode="w",
encoding="utf-8",
),
logging.StreamHandler()
],
)
logger.info("********** Configuration Arguments **********")
for arg, value in sorted(vars(args).items()):
logger.info(f"{arg}: {value}")
logger.info("**************************************************")
args.task_name = args.task_name.lower()
metric_class = METRIC_CLASSES[args.task_name]
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
train_ds = load_dataset("glue", args.task_name, splits="train")
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
trans_func = partial(
convert_example,
tokenizer=tokenizer,
label_list=train_ds.label_list,
max_seq_length=args.max_seq_length,
)
train_ds = train_ds.map(trans_func, lazy=True)
train_batch_sampler = paddle.io.DistributedBatchSampler(
train_ds, batch_size=args.batch_size, shuffle=True
)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # input
Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # segment
Stack(dtype="int64" if train_ds.label_list else "float32"), # label
): fn(samples)
train_data_loader = DataLoader(
dataset=train_ds,
batch_sampler=train_batch_sampler,
collate_fn=batchify_fn,
num_workers=0,
return_list=True,
)
if args.task_name == "mnli":
dev_ds_matched, dev_ds_mismatched = load_dataset(
"glue", args.task_name, splits=["dev_matched", "dev_mismatched"]
)
dev_ds_matched = dev_ds_matched.map(trans_func, lazy=True)
dev_ds_mismatched = dev_ds_mismatched.map(trans_func, lazy=True)
dev_batch_sampler_matched = paddle.io.BatchSampler(
dev_ds_matched, batch_size=args.batch_size * 2, shuffle=False
)
dev_data_loader_matched = DataLoader(
dataset=dev_ds_matched,
batch_sampler=dev_batch_sampler_matched,
collate_fn=batchify_fn,
num_workers=2,
return_list=True,
)
dev_batch_sampler_mismatched = paddle.io.BatchSampler(
dev_ds_mismatched, batch_size=args.batch_size * 2, shuffle=False
)
dev_data_loader_mismatched = DataLoader(
dataset=dev_ds_mismatched,
batch_sampler=dev_batch_sampler_mismatched,
collate_fn=batchify_fn,
num_workers=2,
return_list=True,
)
else:
dev_ds = load_dataset("glue", args.task_name, splits="dev")
dev_ds = dev_ds.map(trans_func, lazy=True)
dev_batch_sampler = paddle.io.BatchSampler(
dev_ds, batch_size=args.batch_size * 2, shuffle=False
)
dev_data_loader = DataLoader(
dataset=dev_ds,
batch_sampler=dev_batch_sampler,
collate_fn=batchify_fn,
num_workers=2,
return_list=True,
)
num_classes = 1 if train_ds.label_list == None else len(train_ds.label_list)
print("num_class:",num_classes)
model = model_class.from_pretrained('./weight/paddle')
# reinit_encoder_layer_parameter(model, last_nums=4)
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
# # layer_lr for base
# ############################################################
# if args.layer_lr_decay != 1.0:
# layer_lr_radios_map = _get_layer_lr_radios(args.layer_lr_decay, n_layers=12)
# for name, parameter in model.named_parameters():
# layer_lr_radio = 1.0
# for k, radio in layer_lr_radios_map.items():
# if k in name:
# layer_lr_radio = radio
# break
# parameter.optimize_attr["learning_rate"] *= layer_lr_radio
# ############################################################
num_training_steps = (
args.max_steps
if args.max_steps > 0
else (len(train_data_loader) * args.num_train_epochs)
)
args.num_train_epochs = math.ceil(num_training_steps/len(train_data_loader))
print('get lr_scheduler')
lr_scheduler = get_scheduler(
learning_rate=args.learning_rate,
scheduler_type=args.scheduler_type,
args=args,
num_warmup_steps=args.warmup_steps
if args.warmup_steps > 0
else args.warmup_proportion,
num_training_steps=num_training_steps,
)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
p.name
for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "Norm"])
]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
beta1=0.9,
beta2=0.98,
epsilon=args.adam_epsilon,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params,
)
loss_fct = (
paddle.nn.loss.CrossEntropyLoss()
if train_ds.label_list
else paddle.nn.loss.MSELoss()
)
metric = metric_class()
global_step = 0
tic_train = time.time()
print("num_training_steps", num_training_steps)
# 6315
# args.logging_steps = 20
# args.save_steps = num_training_steps % 20
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
save_json(args.__dict__, os.path.join(args.output_dir, "args.json"))
logger.info("********** Running training **********")
logger.info(f" Num examples = {len(train_data_loader.dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous train batch size = {args.batch_size}")
logger.info(f" Instantaneous eval batch size = {args.batch_size*2}")
logger.info(f" Total train batch size (w. accumulation) = {args.batch_size}")
logger.info(f" Total optimization steps = {num_training_steps}")
for epoch in range(args.num_train_epochs):
for step, batch in enumerate(train_data_loader):
global_step += 1
input_ids, segment_ids, labels = batch
logits = model(input_ids)
# print(logits,labels)
loss = loss_fct(logits, labels)
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if (
global_step % args.logging_steps == 0
or global_step == num_training_steps
):
logger.info(
"global step %d/%d, epoch: %d, batch: %d, rank_id: %s, loss: %f, lr: %.10f, speed: %.4f step/s"
% (
global_step,
num_training_steps,
epoch,
step,
paddle.distributed.get_rank(),
loss,
optimizer.get_lr(),
args.logging_steps / (time.time() - tic_train),
)
)
tic_train = time.time()
if global_step % args.save_steps == 0 and global_step>5000 or global_step == num_training_steps:
tic_eval = time.time()
if args.task_name == "mnli":
logger.info("=" * 100)
logger.info("m_acc:")
evaluate(model, loss_fct, metric, dev_data_loader_matched)
logger.info("mm_acc:")
evaluate(model, loss_fct, metric, dev_data_loader_mismatched)
logger.info("eval done total : %s s" % (time.time() - tic_eval))
logger.info("=" * 100)
else:
logger.info("=" * 100)
evaluate(model, loss_fct, metric, dev_data_loader)
logger.info("eval done total : %s s" % (time.time() - tic_eval))
if paddle.distributed.get_rank() == 0 and global_step>5000:
output_dir = os.path.join(
args.output_dir,
"%s_ft_model_%d" % (args.task_name, global_step),
)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Need better way to get inner model of DataParallel
model_to_save = (
model._layers
if isinstance(model, paddle.DataParallel)
else model
)
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
if global_step >= num_training_steps:
return
def print_arguments(args):
"""print arguments"""
print("----------- Configuration Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("------------------------------------------------")
if __name__ == "__main__":
args = parse_args()
if args.task_name.lower() in ["sts-b", "rte", "wnli"]:
args.num_train_epochs = 10
if args.output_dir is None:
args.output_dir = args.task_name.lower()
print_arguments(args)
n_gpu = len(os.getenv("CUDA_VISIBLE_DEVICES", "").split(","))
if args.device in "gpu" and n_gpu > 1:
paddle.distributed.spawn(do_train, args=(args,), nprocs=n_gpu)
else:
do_train(args)