-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
79 lines (60 loc) · 1.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import time, datetime
import utils.common as utils
from utils.parser import get_args
import torch
import torch.backends.cudnn as cudnn
import numpy as np
from modules.finetuner import Finetuner
args = get_args()
# Data Acquisition
args.print_freq = {
"cifar10": (256*50)//args.batch_size, # CIFAR-10
"imagenet": (256*500)//args.batch_size # ImageNet
}[args.dataset]
args.num_classes = {
"cifar10": 10, # CIFAR-10
"imagenet": 1000 # ImageNet
}[args.dataset]
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
args.device_ids = list(map(int, args.gpu.split(',')))
torch.manual_seed(args.seed) ##for cpu
np.random.seed(0)
if args.gpu:
torch.cuda.manual_seed(args.seed) ##for gpu
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir)
args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
utils.record_config(args)
now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
logger = utils.get_logger(os.path.join(args.output_dir, 'logger'+now+'.log'))
#use for loading pretrain model
if len(args.gpu)>1:
args.name_base='module.'
else:
args.name_base=''
def main():
start_t = time.time()
cudnn.benchmark = True
cudnn.enabled=True
logger.info("args = %s", args)
tuner = Finetuner(args, logger) #import the network in a predefined class
if not args.test_only:
if args.resume:
tuner.finetune()
tuner.save_onnx()
else:
if args.mode == "prune":
tuner.prune_model()
tuner.show_results()
elif args.mode == "finetune":
tuner.finetune()
tuner.save_onnx()
tuner.show_results()
else:
tuner.show_results()
end_t = time.time()
logger.info('-'*40)
logger.info(f'Total time: {(end_t - start_t):.2f}s')
if __name__ == '__main__':
main()