forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTasks.qs
345 lines (269 loc) · 13.7 KB
/
Tasks.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
namespace Quantum.Kata.RippleCarryAdder {
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Math;
//////////////////////////////////////////////////////////////////
// Welcome!
//////////////////////////////////////////////////////////////////
// The "Ripple Carry Adder" quantum kata is a series of exercises designed
// to get you familiar with ripple-carry addition on a quantum computer,
// walking you through the steps to build two different adders.
// It covers the following topics:
// - Adapting a classical adder to a quantum environment
// - Modifying the adder to re-use input qubits
// - An alternate, simplified quantum adder
// - A simple subtractor
// Each task is wrapped in one operation preceded by the description of the task.
// Each task (except tasks in which you have to write a test) has a unit test associated with it,
// which initially fails. Your goal is to fill in the blank (marked with // ... comment)
// with some Q# code to make the failing test pass.
// Within each section, tasks are given in approximate order of increasing difficulty;
// harder ones are marked with asterisks.
//////////////////////////////////////////////////////////////////
// Part I. Simple adder outputting to empty qubits
//////////////////////////////////////////////////////////////////
// This section adapts the classical binary adder to a quantum computer.
// It starts with simple sum and carry gates, and works up to an N-bit full adder.
// Task 1.1. Summation of two bits
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩,
// 3) qubit "sum" in state |0⟩.
// Goal: transform the "sum" qubit into the lowest bit of the binary sum of φ and ψ
// |0⟩ + |0⟩ → |0⟩
// |0⟩ + |1⟩ → |1⟩
// |1⟩ + |0⟩ → |1⟩
// |1⟩ + |1⟩ → |0⟩
// Any superposition should map appropriately.
// Example:
// |+⟩ = (|0⟩ + |1⟩) / sqrt(2)
// |-⟩ = (|0⟩ - |1⟩) / sqrt(2)
// |+⟩ ⨂ |-⟩ ⨂ |0⟩ → (|000⟩ + |101⟩ - |011⟩ - |110⟩) / 2
operation LowestBitSum (a : Qubit, b : Qubit, sum : Qubit) : Unit is Adj {
// ...
}
// Task 1.2. Carry of two bits
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩,
// 3) qubit "carry" in state |0⟩.
// Goal: set the "carry" qubit to |1⟩ if the binary sum of φ and ψ produces a carry, and leave it in state |0⟩ otherwise.
// |0⟩ and |0⟩ → |0⟩
// |0⟩ and |1⟩ → |0⟩
// |1⟩ and |0⟩ → |0⟩
// |1⟩ and |1⟩ → |1⟩
// Any superposition should map appropriately.
// Example:
// |+⟩ ⨂ |-⟩ ⨂ |0⟩ → (|000⟩ + |100⟩ - |010⟩ - |111⟩) / 2
operation LowestBitCarry (a : Qubit, b : Qubit, carry : Qubit) : Unit is Adj {
// ...
}
// Task 1.3. One-bit adder
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩,
// 3) two qubits "sum" and "carry" in state |0⟩.
// Goals:
// 1) transform the "sum" qubit into the lowest bit of the binary sum of φ and ψ,
// 2) transform the "carry" qubit into the carry bit produced by that sum.
operation OneBitAdder (a : Qubit, b : Qubit, sum : Qubit, carry : Qubit) : Unit is Adj {
// ...
}
// Task 1.4. Summation of 3 bits
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩,
// 3) qubit "carryin" in an arbitrary state |ω⟩,
// 4) qubit "sum" in state |0⟩.
// Goal: transform the "sum" qubit into the lowest bit of the binary sum of φ, ψ and ω.
operation HighBitSum (a : Qubit, b : Qubit, carryin : Qubit, sum : Qubit) : Unit is Adj {
// ...
}
// Task 1.5. Carry of 3 bits
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩,
// 3) qubit "carryin" in an arbitrary state |ω⟩,
// 4) qubit "carryout" in state |0⟩.
// Goal: transform the "carryout" qubit into the carry bit produced by the sum of φ, ψ and ω.
operation HighBitCarry (a : Qubit, b : Qubit, carryin : Qubit, carryout : Qubit) : Unit is Adj {
// ...
}
// Task 1.6. Two-bit adder
// Inputs:
// 1) two-qubit register "a" in an arbitrary state |φ⟩,
// 2) two-qubit register "b" in an arbitrary state |ψ⟩,
// 3) two-qubit register "sum" in state |00⟩,
// 4) qubit "carry" in state |0⟩.
// Goals:
// 1) transform the "sum" register into the binary sum of φ and ψ,
// 2) transform the "carry" qubit into the carry bit produced by that sum.
// Note: All qubit registers in this kata are in little-endian order.
// This means the least significant bit comes first, then the next least significant, and so on.
// In this exercise, for example, 1 would be represented as |10⟩, while 2 would be represented as |01⟩.
// The sum of |10⟩ and |11⟩ would be |001⟩, with the last qubit being the carry qubit.
operation TwoBitAdder (a : Qubit[], b : Qubit[], sum : Qubit[], carry : Qubit) : Unit is Adj {
// Hint: don't forget that you can allocate extra qubits.
// ...
}
// Task 1.7. N-bit adder
// Inputs:
// 1) N qubit register "a" in an arbitrary state |φ⟩,
// 2) N qubit register "b" in an arbitrary state |ψ⟩,
// 3) N qubit register "sum" in state |0...0⟩,
// 4) qubit "carry" in state |0⟩.
// Goals:
// 1) transform the "sum" register into the binary sum of φ and ψ,
// 2) transform the "carry" qubit into the carry bit produced by that sum.
// Challenge: can you do this without allocating extra qubits?
operation ArbitraryAdder (a : Qubit[], b : Qubit[], sum : Qubit[], carry : Qubit) : Unit is Adj {
// ...
}
//////////////////////////////////////////////////////////////////
// Part II. Simple in-place adder
//////////////////////////////////////////////////////////////////
// The adder from the previous section requires empty qubits to accept the result.
// This section adapts the previous adder to calculate the sum in-place,
// that is, to reuse one of the numerical inputs for storing the output.
// Task 2.1. In-place summation of two bits
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩.
// Goal: transform qubit "b" into the lowest bit of the sum of φ and ψ.
// Leave qubit "a" unchanged.
operation LowestBitSumInPlace (a : Qubit, b : Qubit) : Unit is Adj {
// ...
}
// Something to think about: can we re-use one of the input bits to calculate the carry in-place as well? Why or why not?
// Task 2.2. In-place one-bit adder
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩,
// 3) qubit "carry" in state |0⟩.
// Goals:
// 1) transform the "carry" qubit into the carry bit from the addition of φ and ψ,
// 2) transform qubit "b" into the lowest bit of φ + ψ.
// Leave qubit "a" unchanged.
operation OneBitAdderInPlace (a : Qubit, b : Qubit, carry : Qubit) : Unit is Adj {
// Hint: think carefully about the order of operations.
// ...
}
// Task 2.3. In-place summation of three bits
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩,
// 3) qubit "carryin" in an arbitrary state |ω⟩.
// Goal: transform qubit "b" into the lowest bit from the addition of φ and ψ and ω.
// Leave qubits "a" and "carryin" unchanged.
operation HighBitSumInPlace (a : Qubit, b : Qubit, carryin : Qubit) : Unit is Adj {
// ...
}
// Task 2.4. In-place two-bit adder
// Inputs:
// 1) two-qubit register "a" in an arbitrary state |φ⟩,
// 2) two-qubit register "b" in an arbitrary state |ψ⟩,
// 3) qubit "carry" in state |0⟩.
// Goals:
// 1) transform register "b" into the state |φ + ψ⟩,
// 2) transform the "carry" qubit into the carry bit from the addition.
// Leave register "a" unchanged.
operation TwoBitAdderInPlace (a : Qubit[], b : Qubit[], carry : Qubit) : Unit is Adj {
// ...
}
// Task 2.5. In-place N-bit adder
// Inputs:
// 1) N-qubit register "a" in an arbitrary state |φ⟩,
// 2) N-qubit register "b" in an arbitrary state |ψ⟩,
// 3) qubit "carry" in state |0⟩.
// Goals:
// 1) transform register "b" into the state |φ + ψ⟩,
// 2) transform the "carry" qubit into the carry bit from the addition.
// Leave register "a" unchanged.
operation ArbitraryAdderInPlace (a : Qubit[], b : Qubit[], carry : Qubit) : Unit is Adj {
// ...
}
//////////////////////////////////////////////////////////////////
// Part III*. Improved in-place adder
//////////////////////////////////////////////////////////////////
// The in-place adder doesn't require quite as many qubits for the inputs and outputs,
// but it still requires an array of extra ("ancillary") qubits to perform the calculation.
// A relatively recent algorithm allows you to perform the same calculation
// using only one additional qubit.
// Task 3.1. Majority gate
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩,
// 3) qubit "c" in an arbitrary state |ω⟩.
// Goal: construct the "in-place majority" gate:
// 1) transform qubit "a" into the carry bit from the addition of φ, ψ and ω,
// 2) transform qubit "b" into |φ + ψ⟩,
// 3) transform qubit "c" into |φ + ω⟩.
operation Majority (a : Qubit, b : Qubit, c : Qubit) : Unit is Adj {
// ...
}
// Task 3.2. "UnMajority and Add" gate
// Inputs:
// 1) qubit "a" storing the carry bit from the sum φ + ψ + ω,
// 2) qubit "b" in state |φ + ψ⟩,
// 3) qubit "c" in state |φ + ω⟩.
// Goal: construct the "un-majority and add", or "UMA" gate
// 1) restore qubit "a" into state |φ⟩,
// 2) transform qubit "b" into state |φ + ψ + ω⟩,
// 3) restore qubit "c" into state |ω⟩.
operation UnMajorityAdd (a : Qubit, b : Qubit, c : Qubit) : Unit is Adj {
// ...
}
// Task 3.3. One-bit majority-UMA adder
// Inputs:
// 1) qubit "a" in an arbitrary state |φ⟩,
// 2) qubit "b" in an arbitrary state |ψ⟩,
// 3) qubit "carry" in state |0⟩.
// Goal: construct a one-bit binary adder from task 2.2 using Majority and UMA gates.
operation OneBitMajUmaAdder (a : Qubit, b : Qubit, carry : Qubit) : Unit is Adj {
// Hint: Allocate an extra qubit to hold the carry bit used in Majority and UMA gates during the computation.
// It's less efficient here, but it will help in the next tasks.
// ...
}
// Task 3.4. Two-bit majority-UMA adder
// Inputs:
// 1) two qubit register "a" in an arbitrary state |φ⟩,
// 2) two qubit register "b" in an arbitrary state |ψ⟩,
// 3) qubit "carry" in state |0⟩.
// Goal: construct a two-bit binary adder from task 2.4 using Majority and UMA gates.
operation TwoBitMajUmaAdder (a : Qubit[], b : Qubit[], carry : Qubit) : Unit is Adj {
// Hint: think carefully about which qubits you need to pass to the two gates.
// ...
}
// Task 3.5. N-bit majority-UMA adder
// Inputs:
// 1) N qubit register "a" in an arbitrary state |φ⟩,
// 2) N qubit register "b" in an arbitrary state |ψ⟩,
// 3) qubit "carry" in state |0⟩.
// Goal: construct an N-bit binary adder from task 2.5 using only one extra qubit.
operation ArbitraryMajUmaAdder (a : Qubit[], b : Qubit[], carry : Qubit) : Unit is Adj {
// ...
}
//////////////////////////////////////////////////////////////////
// Part IV*. In-place subtractor
//////////////////////////////////////////////////////////////////
// Subtracting a number is the same operation as adding a negative number.
// As such, the binary adder we just built can be easily adapted to act as a subtractor instead.
// Task 4.1. N-bit subtractor
// Inputs:
// 1) N qubit register "a" in an arbitrary state |φ⟩,
// 2) N qubit register "b" in an arbitrary state |ψ⟩,
// 3) qubit "borrow" in state |0⟩.
// Goal: construct a binary subtractor:
// 1) transform register "b" into the state |ψ - φ⟩ ,
// 2) set the "borrow" qubit to |1⟩ if that subtraction required a borrow.
// Leave register "a" unchanged.
operation Subtractor (a : Qubit[], b : Qubit[], borrow : Qubit) : Unit is Adj {
// Hint: use the adder you already built,
// and experiment with inverting the registers before and after the addition.
// ...
}
}