-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path05_word_count.R
55 lines (44 loc) · 1.76 KB
/
05_word_count.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#
# Average Length of Article Over Time
#
# Set Working dir.
setwd(githubdir)
# Source recode
source("good_nyt/scripts/00_nyt_recode.R")
# Summary stat
summary(nyt$word.count)
# Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
# 0 132 415 608 864 30101630 48
# Clearly some miscodings.
length(nyt$word.count[!is.na(nyt$word.count) & nyt$word.count > 10000])
# 445
# Average Word Count
art_length <-
nyt %>%
subset(word.count <= 10000) %>%
group_by(monthly) %>%
summarize(avg_len = mean(word.count, na.rm = T))
ggplot(art_length, aes(monthly, avg_len)) +
geom_smooth(method = "loess", span = 0.3, colour = "#ccaaaa", alpha = 0.7, se = F) +
geom_point(color = "#42C4C7", alpha = 0.35) +
ylab("Average Word Count Per Article") +
xlab("Publication Year") +
scale_y_continuous(limits = c(0, 800), breaks = seq(0, 800, 50), labels = nolead0s(seq(0, 800, 50)), expand = c(.03, .03)) +
scale_x_date(date_breaks = "1 year", date_labels = "%y", expand = c(.03, .03)) +
cust_theme
ggsave("good_nyt/figs/all_word_len_by_mon.pdf")
# Median Word Count
art_length <-
nyt %>%
group_by(monthly) %>%
summarize(avg_len = median(word.count, na.rm = T))
ggplot(art_length, aes(monthly, avg_len)) +
geom_smooth(method = "loess", span = 0.3, colour = "#ccaaaa", alpha = 0.7, se = F) +
geom_point(color = "#42C4C7", alpha = 0.35) +
ylab("Median Word Count Per Article") +
xlab("Publication Year") +
scale_y_continuous(limits = c(0, 800), breaks = seq(0, 800, 50), labels = nolead0s(seq(0, 800, 50)), expand = c(.03, .03)) +
scale_x_date(date_breaks = "1 year", date_labels = "%y", expand = c(.03, .03)) +
cust_theme
ggsave("good_nyt/figs/all_word_len_median_by_mon.pdf")
ggsave("good_nyt/figs/all_word_len_median_by_mon.png")