-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTalk.hs
194 lines (145 loc) · 4.24 KB
/
Talk.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
-- {{{
{-# LANGUAGE RankNTypes, UnicodeSyntax,
TypeOperators, GADTs, MultiParamTypeClasses,
FlexibleInstances, UndecidableInstances,
IncoherentInstances, ScopedTypeVariables #-}
import Prelude hiding (elem,any)
import Data.Foldable
import Data.Traversable
import Control.Applicative
import Data.List (nub,elemIndex)
-- }}}
-- DeBruijn
-- Exercise: Sxyz = xz(yz)
-- {{{ Nested
data a :> v = There a | Here v
instance Eq w ⇒ Eq (w :> v) where
Here _ == Here _ = True
There x == There y = x == y
_ == _ = False
type Succ a = a :> ()
-- }}}
-- {{{ Parametric Nested
data Tm a where
Var :: a → Tm a
App :: Tm a → Tm a → Tm a
Lam :: (∀ v. v → Tm (a :> v)) → Tm a
($$) = App
infixl $$
data Zero
instance Eq Zero where
(==) = magic
magic :: Zero -> a
magic = error "magic!"
var0 = Var . Here
var1 = Var . There . Here
var2 = Var . There . There . Here
scomb2 :: Tm Zero
scomb2 = Lam $ \x -> Lam $ \y -> Lam $ \z -> var2 x $$ var0 z $$ (var1 y $$ var0 z)
-- }}}
-- {{{ :∈
instance x :∈ (γ :> x) where
inj = Here
instance (x :∈ γ) ⇒ x :∈ (γ :> y) where
inj = There . inj
class v :∈ a where
inj :: v → a
var :: ∀ v a. (v :∈ a) ⇒ v → Tm a
var = Var . inj
scomb3 = Lam $ \x -> Lam $ \y -> Lam $ \z -> var x $$ var z $$ (var y $$ var z)
-- }}}
-- {{{ Free vars
fv :: Tm a → [a]
fv (Var x) = [x]
fv (Lam f) = rm (freeVars $ f ())
fv (App f a) = freeVars f ++ freeVars a
rm :: [a :> v] → [a]
rm xs = [x | There x <- xs]
occursIn :: (Eq a, v :∈ a) ⇒ v → Tm a → Bool
occursIn x t = any (`isOccurrenceOf` x) (freeVars t)
isOccurrenceOf :: (Eq w, v :∈ w) => w -> v -> Bool
isOccurrenceOf x y = x == inj y
-- }}}
-- {{{ η-contract?
canEta :: Tm Zero → Bool
canEta (Lam e) = unpack e $ \x t → case t of
App e1 (Var y) → y `isOccurrenceOf` x &&
not (x `occursIn` e1)
_ → False
canEta _ = False
-- }}}
-- {{{ Unpack
unpack :: (∀ v. v → tm (w :> v)) →
(∀ v. v → tm (w :> v) → a) → a
unpack b k = k fresh (b fresh)
fresh = error "can't have THAT!"
-- }}}
-- {{{ Exercise: rewrite fv/rm
remove :: v -> [a :> v] → [a]
remove _ xs = [x | There x <- xs]
freeVars :: Tm w → [w]
freeVars (Var x) = [x]
freeVars (Lam f) = unpack f $ \ x t →
remove x (freeVars t)
freeVars (App f a) = freeVars f ++ freeVars a
-- }}}
-- {{{ Functor
mapu :: (u → u') → (v → v') → (u :> v) → (u' :> v')
mapu f g (There x) = There (f x)
mapu f g (Here x) = Here (g x)
instance Functor Tm where
fmap f (Var x) = Var (f x)
fmap f (Lam g) = Lam (\x -> fmap (mapu f id) (g x))
fmap f (App t u) = App (fmap f t) (fmap f u)
-- }}}
-- {{{ ⊆
class a ⊆ b where
injMany :: a → b
instance a ⊆ a where injMany = id
instance Zero ⊆ a where injMany = magic
instance (γ ⊆ δ) ⇒ (γ :> v) ⊆ (δ :> v) where
injMany = mapu injMany id
instance (a ⊆ c) ⇒ a ⊆ (c :> b) where
injMany = There . injMany
wk :: (Functor f, γ ⊆ δ) ⇒ f γ → f δ
wk = fmap injMany
-- }}}
-- {{{ Monad
lift θ (There x) = wk (θ x)
lift θ (Here x) = var x
instance Monad Tm where
Var x >>= θ = θ x
Lam t >>= θ = Lam (\x → t x >>= lift θ)
App t u >>= θ = App (t >>= θ) (u >>= θ)
return = Var
(∙) :: (a -> Tm b) -> Tm a -> Tm b
(∙) = (=<<)
-- var :: (Monad tm, v :∈ a) ⇒ v → tm a
-- var = return . inj
-- lift :: (Functor tm, Monad tm) ⇒ (a -> tm b) → (a :> v) -> tm (b :> v)
-- }}}
-- {{{ Pack
pack :: Functor tm ⇒ v' → tm (w :> v') → (∀ v. v → tm (w :> v))
pack x t = \y → fmap (mapu id (const y)) t
lam' :: v → Tm (w :> v) → Tm w
lam' x t = Lam (pack x t)
-- }}}
-- {{{ Traversable
traverseu :: Functor f ⇒ (a → f a') → (b → f b') →
a :> b → f (a' :> b')
traverseu f _ (There x) = There <$> f x
traverseu _ g (Here x) = Here <$> g x
instance Foldable Tm where foldMap = foldMapDefault
instance Traversable Tm where
traverse f (Var x) =
Var <$> f x
traverse f (App t u) =
App <$> traverse f t <*> traverse f u
traverse f (Lam g) =
unpack g $ \x b →
lam' x <$> traverse (traverseu f pure) b
-- {{{ Free vars again:
fv' :: Tm x -> [x]
fv' = toList
-- }}}
-- }}}