-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfaceinpictureclassifier.py
243 lines (207 loc) · 11.9 KB
/
faceinpictureclassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import cv
import requests
import pickle
import numpy
import sqlite3 as lite
from findface import find_face
from imagegrabber import ImageGrabber
class FaceInPictureClassifier(object):
def __init__(self):
self.listingIds = []
self.imgGrabber = ImageGrabber()
self.listingStatistics = {}
def get_listing_ids_from_file(self,listingIdFilename):
self.listingIdFile = open(listingIdFilename, 'r')
for line in self.listingIdFile:
if line.strip() not in self.listingStatistics:
self.listingStatistics[line.strip()] = {}
self.listingIds.append(line.strip())
self.listingIdFile.close()
def get_listing_data_from_pickled(self, pickle_filename, listing_id_list_filename, start, limit):
self.pickle_file = pickle.load(open(pickle_filename,"rb"))
listing_id_list = pickle.load(open(listing_id_list_filename, "rb"))
for j in range(start,start+limit):
listing_id = int(listing_id_list[j])
print("Processing Listing ID number %d: %d" % (j, listing_id))
self.listingIds.append(listing_id)
if listing_id not in self.listingStatistics:
self.listingStatistics[listing_id] = self.pickle_file[str(listing_id)]
self.imgGrabber.get_listing_tags(listing_id)
self.listingStatistics[listing_id]['tags'] = self.imgGrabber.tags
self.listingStatistics[listing_id]['unfiltered'] = self.imgGrabber.unfiltered_results
#self.check_for_faces()
def get_listing_data_from_database(self, database_file, start, limit):
con = lite.connect(database_file)
with con:
make_columns_flag = False
con.row_factory = lite.Row
cur = con.cursor()
cur.execute('PRAGMA TABLE_INFO(Listings)')
labels = cur.fetchall()
for label in labels:
print label
if 'tags' in label or 'unfiltered' in label:
make_columns_flag = True
break
if not make_columns_flag:
cur.execute('ALTER TABLE Listings ADD COLUMN tags BLOB')
cur.execute('ALTER TABLE Listings ADD COLUMN unfiltered BLOB')
cur.execute('SELECT * FROM Listings WHERE id >= ? AND id < ?', (start, start+limit))
rows = cur.fetchall()
for row in rows:
listing_id = row['listingid']
self.listingIds.append(listing_id)
if listing_id not in self.listingStatistics:
self.listingStatistics[listing_id] = {}
for i in range(2,len(row)):
self.listingStatistics[listing_id][labels[i][1]] =row[i]
self.imgGrabber.get_listing_tags(listing_id)
self.listingStatistics[listing_id]['tags'] = self.imgGrabber.tags
self.listingStatistics[listing_id]['unfiltered'] = self.imgGrabber.unfiltered_results
cur.execute('INSERT INTO Listings(tags, unfiltered) VALUES (?, ?)', (self.listingStatistics[listing_id]['tags'], self.listingStatistics[listing_id]['unfiltered']))
con.commit()
def check_face_for_pickled(self, pickle_filename, classifier="haarcascade_frontalface_alt.xml"):
self.pickle_data = pickle.load(open(pickle_filename,"rb"))
i = 0
n = len(self.pickle_data)
for listingId in self.pickle_data:
print("Processing %d of %d images." % (i,n))
i = i + 1
self.imgGrabber.get_listing_image(listingId)
self.pickle_data[listingId]['face'] = find_face(self.imgGrabber.cvImage, True, listingId, classifier)
def get_listing_ids_and_tags_from_listings(self, listingFilename):
self.listingFile = open(listingFilename, 'r')
for line in self.listingFile:
singleListing = eval(line)
listingId = singleListing['listing_id']
tags = singleListing['tags']
if listingId not in self.listingStatistics:
self.listingStatistics[listingId] = {}
self.listingIds.append(listingId)
self.listingStatistics[listingId]['tags'] = tags
self.listingStatistics[listingId]['unfiltered'] = [singleListing]
def check_for_faces(self, classifier="haarcascade_frontalface_alt.xml"):
n = len(self.listingIds)
i = 0
faces = 0
non_faces = 0
for listingId in self.listingIds:
if listingId not in self.listingStatistics:
self.listingStatistics[listingId] = {}
print("Processing %d of %d images." % (i,n))
i = i + 1
self.imgGrabber.get_listing_image(listingId)
self.listingStatistics[listingId]['face'] = find_face(self.imgGrabber.cvImage, True, listingId, classifier)
if self.listingStatistics[listingID]['face']:
faces += 1
else:
non_faces += 1
print("%d faces found, %d not found." % (faces, non_faces))
def set_listing_ids(self, listingIdList):
self.listingIds = listingIdList
def reset_statistics(self):
self.listingStatistics = {}
# with open("../cached/active_sundress_listing_ids.txt",'r') as f:
# for line in f:
# listingIds.append(line.strip())
# a = ImageGrabber()
# i = 0
# for listingId in self.listingIds:
# print i + 1
# print listingId
# i = i+ 1
# a.get_listing_image(listingId)
# print find_face(a.cvImage)
# cv.ShowImage("Double Checking", a.cvImage)
# cv.WaitKey(0)
def determine_face_sales_correlation(self, data_filename):
data = pickle.load(open(data_filename, "rb"))
#The naive approach at determining the effect of a face on purchasability:
face_sales = 0
face_average_days_listed = 0
no_face_sales = 0
no_face_average_days_listed = 0
total_faces = 0
non_faces = 0
face_sales_list = []
no_face_sales_list = []
face_days_list = []
no_face_days_list = []
for entry in data:
if data[entry]['face']:
total_faces += 1
face_sales += data[entry]['sales']
face_average_days_listed += data[entry]['days_listed'] * data[entry]['sales']
face_sales_list.append(data[entry]['sales'])
for j in range(0,data[entry]['sales']):
face_days_list.append(data[entry]['days_listed'])
else:
non_faces += 1
no_face_sales += data[entry]['sales']
no_face_average_days_listed += data[entry]['days_listed'] * data[entry]['sales']
no_face_sales_list.append(data[entry]['sales'])
for j in range(0,data[entry]['sales']):
no_face_days_list.append(data[entry]['days_listed'])
maxfacedayslist = max(sorted(face_days_list))
maxnofacedayslist = max(sorted(no_face_days_list))
print "max face %s" % maxfacedayslist
print "max no face %s" % maxnofacedayslist
face_average_days_listed /= face_sales
no_face_average_days_listed /= no_face_sales
print("There were a total of %d images with faces, %d without." % (total_faces, non_faces))
print("The number of sales for listings with faces is: %d with an average number of days is %d" % (face_sales, face_average_days_listed))
print("The number of sales for listings without faces is: %d with an average number of days is %d" % (no_face_sales, no_face_average_days_listed))
print("The average sales per listing was %d with a standard error of %d for listings with faces." % (numpy.average(face_sales_list), numpy.std(face_sales_list)/numpy.sqrt(non_faces)))
print("The average sales per listing was %d with a standard error of %d for listings without faces." % (numpy.average(no_face_sales_list), numpy.std(no_face_sales_list)/numpy.sqrt(non_faces)))
print("The average days per listing was %d with a standard error of %d for listings with faces." % (numpy.average(face_days_list), numpy.std(face_days_list)/numpy.sqrt(non_faces)))
print("The average days per listing was %d with a standard error of %d for listings without faces." % (numpy.average(no_face_days_list), numpy.std(no_face_days_list)/numpy.sqrt(non_faces)))
def determine_face_views_sales_correlation(self, data_filename):
data = pickle.load(open(data_filename, "rb"))
#The naive approach at determining the effect of a face on purchasability:
face_sales = 0
face_average_views = 0
no_face_sales = 0
no_face_average_views = 0
total_faces = 0
non_faces = 0
face_sales_list = []
no_face_sales_list = []
face_views_list = []
no_face_views_list = []
for entry in data:
if 'views' in data[entry].keys():
if data[entry]['face']:
total_faces += 1
face_sales += data[entry]['sales']
face_sales_list.append(data[entry]['sales'])
face_views_list.append(data[entry]['views'])
else:
non_faces += 1
no_face_sales += data[entry]['sales']
no_face_sales_list.append(data[entry]['sales'])
no_face_views_list.append(data[entry]['views'])
max_views_face_list = numpy.max(face_views_list)
max_views_no_face_list = numpy.max(no_face_views_list)
print("max of views with a face: %d, without: %d" % (max_views_face_list, max_views_no_face_list))
print("There were a total of %d images with faces, %d without." % (total_faces, non_faces))
# print("The number of sales for listings with faces is: %d with an average number of views is %d" % (face_sales, face_average_views))
# print("The number of sales for listings without faces is: %d with an average number of days is %d" % (no_face_sales, no_face_average_views)
print("The average sales per listing was %d with a standard error of %d for listings with faces." % (numpy.average(face_sales_list), numpy.std(face_sales_list)/numpy.sqrt(total_faces)))
print("The average sales per listing was %d with a standard error of %d for listings without faces." % (numpy.average(no_face_sales_list), numpy.std(no_face_sales_list)/numpy.sqrt(non_faces)))
print("The average views per listing was %d with a standard error of %d for listings with faces." % (numpy.average(face_views_list), numpy.std(face_views_list)/numpy.sqrt(total_faces)))
print("The average views per listing was %d with a standard error of %d for listings without faces." % (numpy.average(no_face_views_list), numpy.std(no_face_views_list)/numpy.sqrt(non_faces)))
if __name__ == "__main__":
a = FaceInPictureClassifier()
# classifier = "classifiers/haarcascade_frontalface_alt.xml"
#a.get_listing_data_from_pickled("../cached/big_sellers_listings.p","../cached/listingID_list.p", 0,4000)
#pickle.dump(a.listingStatistics, open("../cached/first4k.p", "wb"))
#a.get_listing_ids_and_tags_from_listings("../cached/active_sundress_listings.txt")
#pickle.dump(a.listingStatistics, open("../cached/active_sundress_listings.p","wb"))
# b = FaceInPictureClassifier()
# b.get_listing_ids_and_tags_from_listings("../cached/test.txt")
# pickle.dump(b.listingStatistics, open("../cached/test.p", "wb"))
# #a.check_for_faces(classifier)
a.check_face_for_pickled("../cached/better_active_sundress_listings_sales.p")
pickle.dump(a.pickle_data, open("../cached/better_face_active_sundresses_sales.p", "wb"))
#a.determine_face_views_sales_correlation("../cached/better_face_active_sundresses.p")
#a.get_listing_data_from_database("../cached/FIP.db", 1,50)